Synthesis of multi-wavelength temporal phase-shifting algorithms optimized for high signal-to-noise ratio and high detuning robustness using the freque

Synthesis of single-wavelength temporal phase-shifting algorithms (PSA) for interferometry is well-known and firmly based on the frequency transfer function (FTF) paradigm. Here we extend the single-wavelength FTF-theory to dual and multi-wavelength PSA-synthesis when several simultaneous laser-colors are present. The FTF-based synthesis for dual-wavelength PSA (DW-PSA) is optimized for high signal-to-noise ratio and minimum number of temporal phase-shifted interferograms. The DW-PSA synthesis herein presented may be used for interferometric contouring of discontinuous industrial objects. Also DW-PSA may be useful for DW shop-testing of deep free-form aspheres. As shown here, using the FTF-based synthesis one may easily find explicit DW-PSA formulae optimized for high signal-to-noise and high detuning robustness. To this date, no general synthesis and analysis for temporal DW-PSAs has been given; only had-hoc DW-PSAs formulas have been reported. Consequently, no explicit formulae for their spectra, their signal-to-noise, their detuning and harmonic robustness has been given. Here for the first time a fully general procedure for designing DW-PSAs (or triple-wavelengths PSAs) with desire spectrum, signal-to-noise ratio and detuning robustness is given. We finally generalize DW-PSA to higher number of wavelength temporal PSAs.

Comments: 15 pages, 18 figures, 09-03-2016

Similar Publications

We studied the multi-plateau high-order harmonic generation (HHG) from solids numerically. It is found that the HHG spectrum in the second or higher plateau is redshifted in short laser pulses due to the nonadiabatic effect. The corresponding FWHMs also increase, suggesting the step-by-step excitation process of higher conduction bands in the HHG process. Read More


Several applications, such as optical tweezers and atom guiding, benefit from techniques that allow the engineering of optical fields' spatial profiles, in particular their longitudinal intensity patterns. In cylindrical coordinates, methods such as Frozen Waves allow an advanced control of beams' characteristics, but in Cartesian coordinates there is no analogous technique. Since Cartesian beams may also be useful for applications, we develop here a method to modulate on-demand the longitudinal intensity pattern of any (initially) unidimensional Cartesian beam with concentrated wavevector spectrum, thus encompassing all paraxial unidimensional beams. Read More


Optical surface waves, highly localized modes bound to the surface of media, enable manipulation of light at nanoscale, thus impacting a wide range of areas in nanoscience. By applying metamaterials, artificially designed optical materials, as contacting media at the interface, we can significantly ameliorate surface wave propagation and even generate new types of waves. Here, we demonstrate that high aspect ratio (1:20) grating structures with plasmonic lamellas in deep nanoscale trenches function as a versatile platform supporting both surface and volume infrared waves. Read More


We study the properties of a soliton crystal, an bound state of several optical pulses that propagate with a fixed temporal separation through the optical fibres of the proposed approach for generation of optical frequency combs (OFC) for astronomical spectrograph calibration. This approach - also being suitable for subpicosecond pulse generation for other applications - consists of a conventional single-mode fibre and a suitably pumped Erbium-doped fibre. Two continuous-wave lasers are used as light source. Read More


We achieve simultaneous scattering invisibility and free-space field enhancement relying on multipolar interferences among all-dielectric nanoparticles. The scattering properties of all-dielectric nanowire quadrumers are investigated and two sorts of scattering invisibilities have been identified: the trivial invisibility where the individual nanowires are not effectively excited; and the nontrivial invisibility with strong multipolar excitations within each nanowire, which results in free-space field enhancement outside the particles. It is revealed that such nontrivial invisibility originates from not only the simultaneous excitations of both electric and magnetic resonances, but also their significant magnetoelectric cross-interactions. Read More


We examine the photonic spin Hall effect (SHE) in a graphene-substrate system with the presence of external magnetic field. In the quantum Hall regime, we demonstrate that the in-plane and transverse spin-dependent splittings in photonic SHE exhibit different quantized behaviors. The quantized SHE can be described as a consequence of a quantized geometric phase (Berry phase), which corresponds to the quantized spin-orbit interaction. Read More


Finding a fluorescent target in a biological environment is a common and pressing microscopy problem. This task is formally analogous to the canonical search problem. In ideal (noise-free, truthful) search problems, the well-known binary search is optimal. Read More


Configuration of three different concave silver core-shell nanoresonators was numerically optimized to enhance the excitation and emission of embedded silicon vacancy (SiV) diamond color centers simultaneously. According to the tradeoff between the radiative rate enhancement and quantum efficiency (QE) conditional optimization was performed to ensure ~2-3-4 and 5-fold apparent cQE enhancement of SiV color centers with ~10% intrinsic QE. The enhancement spectra, as well as the near-field and charge distribution were inspected to uncover the physics underlying behind the optical responses. Read More


We present and analyze two pathways to produce commercial optical-fiber patch cords with stable long-term transmission in the ultraviolet (UV) at powers up to $\sim200$ mW. We provide a guide to producing such solarization-resistant, hydrogen-passivated, polarization-maintaining, connectorized and jacketed optical fibers compatible with demanding scientific and industrial applications. Our presentation describes the fabrication and hydrogen loading procedure in detail and presents a high-pressure vessel design, calculations of required H$_2$ loading times, and information on patch cord handling and the mitigation of bending sensitivities. Read More


In this paper, we develop a theoretical analysis to efficiently handle superpositions of waves with concentrated wavevector and frequency spectra, allowing an easy analytical description of fields with interesting transverse profiles. First, we analyze an extension of the paraxial formalism that is more suitable for superposing these types of waves, as it does not rely on the use of coordinate rotations combined with paraxial assumptions. Second, and most importantly, we leverage the obtained results to describe azimuthally symmetric waves composed of superpositions of zero-order Bessel beams with close cone angles that can be as large as desired, unlike in the paraxial formalism. Read More