# An introduction to sampling via measure transport

We present the fundamentals of a measure transport approach to sampling. The idea is to construct a deterministic coupling---i.e., a transport map---between a complex "target" probability measure of interest and a simpler reference measure. Given a transport map, one can generate arbitrarily many independent and unweighted samples from the target simply by pushing forward reference samples through the map. We consider two different and complementary scenarios: first, when only evaluations of the unnormalized target density are available, and second, when the target distribution is known only through a finite collection of samples. We show that in both settings the desired transports can be characterized as the solutions of variational problems. We then address practical issues associated with the optimization--based construction of transports: choosing finite-dimensional parameterizations of the map, enforcing monotonicity, quantifying the error of approximate transports, and refining approximate transports by enriching the corresponding approximation spaces. Approximate transports can also be used to "Gaussianize" complex distributions and thus precondition conventional asymptotically exact sampling schemes. We place the measure transport approach in broader context, describing connections with other optimization--based samplers, with inference and density estimation schemes using optimal transport, and with alternative transformation--based approaches to simulation. We also sketch current work aimed at the construction of transport maps in high dimensions, exploiting essential features of the target distribution (e.g., conditional independence, low-rank structure). The approaches and algorithms presented here have direct applications to Bayesian computation and to broader problems of stochastic simulation.

**Comments:**To appear in Handbook of Uncertainty Quantification; R. Ghanem, D. Higdon, and H. Owhadi, editors; Springer, 2016

## Similar Publications

Convex sparsity-promoting regularizations are ubiquitous in modern statistical learning. By construction, they yield solutions with few non-zero coefficients, which correspond to saturated constraints in the dual optimization formulation. Working set (WS) strategies are generic optimization techniques that consist in solving simpler problems that only consider a subset of constraints, whose indices form the WS. Read More

In many modern settings, data are acquired iteratively over time, rather than all at once. Such settings are known as online, as opposed to offline or batch. We introduce a simple technique for online parameter estimation, which can operate in low memory settings, settings where data are correlated, and only requires a single inspection of the available data at each time period. Read More

This article proposes a new graphical tool, the magnitude-shape (MS) plot, for visualizing both the magnitude and shape outlyingness of multivariate functional data. The proposed tool builds on the recent notion of functional directional outlyingness, which measures the centrality of functional data by simultaneously considering the level and the direction of their deviation from the central region. The MS-plot intuitively presents not only levels but also directions of magnitude outlyingness on the horizontal axis or plane, and demonstrates shape outlyingness on the vertical axis. Read More

Kernel quadratures and other kernel-based approximation methods typically suffer from prohibitive cubic time and quadratic space complexity in the number of function evaluations. The problem arises because a system of linear equations needs to be solved. In this article we show that the weights of a kernel quadrature rule can be computed efficiently and exactly for up to tens of millions of nodes if the kernel, integration domain, and measure are fully symmetric and the node set is a union of fully symmetric sets. Read More

nimble is an R package for constructing algorithms and conducting inference on hierarchical models. The nimble package provides a unique combination of flexible model specification and the ability to program model-generic algorithms -- specifically, the package allows users to code models in the BUGS language, and it allows users to write algorithms that can be applied to any appropriately-specified BUGS model. In this paper, we introduce nimble's capabilities for state-space model analysis using Sequential Monte Carlo (SMC) techniques. Read More

Integration against an intractable probability measure is among the fundamental challenges of statistical inference, particularly in the Bayesian setting. A principled approach to this problem seeks a deterministic coupling of the measure of interest with a tractable "reference" measure (e.g. Read More

We study the convergence properties of the Gibbs Sampler in the context of posterior distributions arising from Bayesian analysis of Gaussian hierarchical models. We consider centred and non-centred parameterizations as well as their hybrids including the full family of partially non-centred parameterizations. We develop a novel methodology based on multi-grid decompositions to derive analytic expressions for the convergence rates of the algorithm for an arbitrary number of layers in the hierarchy, while previous work was typically limited to the two-level case. Read More

The marginal likelihood plays an important role in many areas of Bayesian statistics such as parameter estimation, model comparison, and model averaging. In most applications, however, the marginal likelihood is not analytically tractable and must be approximated using numerical methods. Here we provide a tutorial on bridge sampling (Bennett, 1976; Meng & Wong, 1996), a reliable and relatively straightforward sampling method that allows researchers to obtain the marginal likelihood for models of varying complexity. Read More

This study presents an innovative method for reducing the number of rating scale items without predictability loss. The "area under the re- ceiver operator curve method" (AUC ROC) is used to implement in the RatingScaleReduction package posted on CRAN. Several cases have been used to illustrate how the stepwise method has reduced the number of rating scale items (variables). Read More

Bayesian optimal experimental design has immense potential to inform the collection of data, so as to subsequently enhance our understanding of a variety of processes. However, a major impediment is the difficulty in evaluating optimal designs for problems with large, or high-dimensional, design spaces. We propose an efficient search heuristic suitable for general optimisation problems, with a particular focus on optimal Bayesian experimental design problems. Read More