Scalable posterior approximations for large-scale Bayesian inverse problems via likelihood-informed parameter and state reduction

Two major bottlenecks to the solution of large-scale Bayesian inverse problems are the scaling of posterior sampling algorithms to high-dimensional parameter spaces and the computational cost of forward model evaluations. Yet incomplete or noisy data, the state variation and parameter dependence of the forward model, and correlations in the prior collectively provide useful structure that can be exploited for dimension reduction in this setting--both in the parameter space of the inverse problem and in the state space of the forward model. To this end, we show how to jointly construct low-dimensional subspaces of the parameter space and the state space in order to accelerate the Bayesian solution of the inverse problem. As a byproduct of state dimension reduction, we also show how to identify low-dimensional subspaces of the data in problems with high-dimensional observations. These subspaces enable approximation of the posterior as a product of two factors: (i) a projection of the posterior onto a low-dimensional parameter subspace, wherein the original likelihood is replaced by an approximation involving a reduced model; and (ii) the marginal prior distribution on the high-dimensional complement of the parameter subspace. We present and compare several strategies for constructing these subspaces using only a limited number of forward and adjoint model simulations. The resulting posterior approximations can rapidly be characterized using standard sampling techniques, e.g., Markov chain Monte Carlo. Two numerical examples demonstrate the accuracy and efficiency of our approach: inversion of an integral equation in atmospheric remote sensing, where the data dimension is very high; and the inference of a heterogeneous transmissivity field in a groundwater system, which involves a partial differential equation forward model with high dimensional state and parameters.

Comments: 35 pages, 12 figures

Similar Publications

Affiliations: 1University of California Davis, 2University of Duisburg-Essen

In this note we describe experiments on an implementation of two methods proposed in the literature for computing regions that correspond to a notion of order statistics for multidimensional data. Our implementation, which works for any dimension greater than one, is the only that we know of to be publicly available. Experiments run using the software confirm that half-space peeling generally gives better results than directly peeling convex hulls, but at a computational cost. Read More

In many real problems, dependence structures more general than exchangeability are required. For instance, in some settings partial exchangeability is a more reasonable assumption. For this reason, vectors of dependent Bayesian nonparametric priors have recently gained popularity. Read More

BDSAR is an R package which estimates distances between probability distributions and facilitates a dynamic and powerful analysis of diagnostics for Bayesian models from the class of Simultaneous Autoregressive (SAR) spatial models. The package offers a new and fine plot to compare models as well as it works in an intuitive way to allow any analyst to easily build fine plots. These are helpful to promote insights about influential observations in the data. Read More

This article reviews the application of advanced Monte Carlo techniques in the context of Multilevel Monte Carlo (MLMC). MLMC is a strategy employed to compute expectations which can be biased in some sense, for instance, by using the discretization of a associated probability law. The MLMC approach works with a hierarchy of biased approximations which become progressively more accurate and more expensive. Read More

The scalable calculation of matrix determinants has been a bottleneck to the widespread application of many machine learning methods such as determinantal point processes, Gaussian processes, generalised Markov random fields, graph models and many others. In this work, we estimate log determinants under the framework of maximum entropy, given information in the form of moment constraints from stochastic trace estimation. The estimates demonstrate a significant improvement on state-of-the-art alternative methods, as shown on a wide variety of UFL sparse matrices. Read More

The ensemble Kalman filter (EnKF) is a computational technique for approximate inference on the state vector in spatio-temporal state-space models. It has been successfully used in many real-world nonlinear data-assimilation problems with very high dimensions, such as weather forecasting. However, the EnKF is most appropriate for additive Gaussian state-space models with linear observation equation and without unknown parameters. Read More

Lorentz Transmission Electron Microscopy (TEM) observations of magnetic nanoparticles contain information on the magnetic and electrostatic potentials. Vector Field Electron Tomography (VFET) can be used to reconstruct electromagnetic potentials of the nanoparticles from their corresponding LTEM images. The VFET approach is based on the conventional filtered back projection approach to tomographic reconstructions and the availability of an incomplete set of measurements due to experimental limitations means that the reconstructed vector fields exhibit significant artifacts. Read More

A new recalibration post-processing method is presented to improve the quality of the posterior approximation when using Approximate Bayesian Computation (ABC) algorithms. Recalibration may be used in conjunction with existing post-processing methods, such as regression-adjustments. In addition, this work extends and strengthens the links between ABC and indirect inference algorithms, allowing more extensive use of misspecified auxiliary models in the ABC context. Read More

In the quest for scalable Bayesian computational algorithms we need to exploit the full potential of existing methodologies. In this note we point out that message passing algorithms, which are very well developed for inference in graphical models, appear to be largely unexplored for scalable inference in Bayesian multilevel regression models. We show that nested multilevel regression models with Gaussian errors lend themselves very naturally to the combined use of belief propagation and MCMC. Read More

Many real-world systems are profitably described as complex networks that grow over time. Preferential attachment and node fitness are two ubiquitous growth mechanisms that not only explain certain structural properties commonly observed in real-world systems, but are also tied to a number of applications in modeling and inference. While there are standard statistical packages for estimating the structural properties of complex networks, there is no corresponding package when it comes to the estimation of growth mechanisms. Read More