FPGA-based trigger system for the Fermilab SeaQuest experiment

The SeaQuest experiment (Fermilab E906) detects pairs of energetic {\mu}+ and {\mu}- produced in 120 GeV/c proton-nucleon interactions in a high rate environment. The trigger system consists of several arrays of scintillator hodoscopes and a set of field-programmable gate array (FPGA) based VMEbus modules. Signals from up to 96 channels of hodoscope are digitized by each FPGA with a 1-ns resolution using the time-to-digital convertor (TDC) firmware. The delay of the TDC output can be adjusted channel-by-channel in 1-ns steps and then re-aligned with the beam RF clock. The hit pattern on the hodoscope planes is then examined against pre-determined trigger matrices to identify candidate muon tracks. Information on the candidate tracks is sent to the 2nd-level FPGA-based track correlator to find candidate di-muon events. The design and implementation of the FPGA-based trigger system for SeaQuest experiment are presented.

Comments: 12 pages, 9 figures

Similar Publications

Radiation hardness is an important requirement for solid state readout devices operating in high radiation environments common in particle physics experiments. The MEGII experiment, at PSI, Switzerland, investigates the forbidden decay $\mu^+ \to \mathrm{e}^+ \gamma$. Exploiting the most intense muon beam of the world. Read More

In this document, the technical details of the JSNS$^2$ (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source) experiment are described. The search for sterile neutrinos is currently one of the hottest topics in neutrino physics. The JSNS$^2$ experiment aims to search for the existence of neutrino oscillations with $\Delta m^2$ near 1 eV$^2$ at the J-PARC Materials and Life Science Experimental Facility (MLF). Read More

The use of Standard Reference Materials (SRM) from the National Institute of Standards and Technology (NIST) for quantitative analysis of chemical composition using Synchrotron based X-Ray Florescence (SR-XRF) and Scanning Transmission X-Ray Microscopy (STXM) is common. These standards however can suffer from inhomogeneity in chemical composition and thickness and often require further calculations, based on sample mounting and detector geometry, to obtain quantitative results. These inhomogeneities negatively impact the reproducibility of the measurements and the quantitative measure itself. Read More

In this article we present an automatic method for charge and mass identification of charged nuclear fragments produced in heavy ion collisions at intermediate energies. The algorithm combines a generative model of DeltaE - E relation and a Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES). The CMA-ES is a stochastic and derivative-free method employed to search parameter space of the model by means of a fitness function. Read More

MicroBooNE (the Micro Booster Neutrino Experiment) is a short-baseline neutrino experiment based on the technology of a liquid-argon time-projection chamber (LArTPC), and has recently completed its first year of data-taking in the Fermilab Booster Neutrino Beam. It aims to address the anomalous excess of events with an electromagnetic final state in MiniBooNE, to measure neutrino-argon interaction cross sections, and to provide relevant R\&D for the future LArTPC experiments, such as DUNE. In these proceedings, we present the first reconstructed energy spectrum of Michel electrons from cosmic muon decays, the first kinematic distributions of the candidate muon tracks from $\nu_{\mu}$-argon charged-current interactions, and a demonstration of an electromagnetic shower reconstruction from $\pi^0$s produced by $\nu_{\mu}$-argon charged-current interactions. Read More

A system for online measurement of the transverse beam emittance was developed. It is named $^{4}$PrOB$\varepsilon$aM (4-Profiler Online Beam Emittance Measurement) and was conceived to measure the emittance in a fast and efficient way using the multiple beam profiler method. The core of the system is constituted by four consecutive UniBEaM profilers, which are based on silica fibers passing across the beam. Read More

Affiliations: 1Korea Advanced Institute of Science and Technology, 2Osaka University, 3Institute for Basic Science, 4Technische Universität Dresden

This paper discusses how to improve the experimental sensitivity of the $\mu^- + N(A,Z) \rightarrow e^+ + N(A,Z-2)$ conversion in a muonic atom, which is a charged lepton number and lepton flavor violating (CLNFV) process. Currently, the measurement of this process is planned with future experiments to search for the $\mu^- -e^-$ conversion with an aluminum target. We demonstrate that a search for $\mu^--e^+$ would be limited to a sensitivity improvement less than a factor of ten due to backgrounds from radiative muon capture, whereas the $\mu^--e^-$ conversion is anticipated to have four orders of magnitude of improvement in its experimental sensitivity. Read More

Authors: MicroBooNE collaboration, R. Acciarri, C. Adams, R. An, J. Anthony, J. Asaadi, M. Auger, L. Bagby, S. Balasubramanian, B. Baller, C. Barnes, G. Barr, M. Bass, F. Bay, M. Bishai, A. Blake, T. Bolton, B. Bullard, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F. Cavanna, H. Chen, E. Church, D. Cianci, E. Cohen, G. H. Collin, J. M. Conrad, M. Convery, J. I. Crespo-Anadon, G. De Geronimo, M. Del Tutto, D. Devitt, S. Dytman, B. Eberly, A. Ereditato, L. Escudero Sanchez, J. Esquivel, A. A. Fadeeva, B. T. Fleming, W. Foreman, A. P. Furmanski, D. Garcia-Gamez, G. T. Garvey, V. Genty, D. Goeldi, S. Gollapinni, N. Graf, E. Gramellini, H. Greenlee, R. Grosso, R. Guenette, A. Hackenburg, P. Hamilton, O. Hen, J. Hewes, C. Hill, J. Ho, G. Horton-Smith, A. Hourlier, E. -C. Huang, C. James, J. Jan de Vries, C. -M. Jen, L. Jiang, R. A. Johnson, J. Joshi, H. Jostlein, D. Kaleko, G. Karagiorgi, W. Ketchum, B. Kirby, M. Kirby, T. Kobilarcik, I. Kreslo, A. Laube, S. Li, Y. Li, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, M. Luethi, B. Lundberg, X. Luo, A. Marchionni, C. Mariani, J. Marshall, D. A. Martinez Caicedo, V. Meddage, T. Miceli, G. B. Mills, J. Moon, M. Mooney, C. D. Moore, J. Mousseau, R. Murrells, D. Naples, P. Nienaber, J. Nowak, O. Palamara, V. Paolone, V. Papavassiliou, S. F. Pate, Z. Pavlovic, E. Piasetzky, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, V. Radeka, A. Rafique, S. Rescia, L. Rochester, C. Rudolf von Rohr, B. Russell, D. W. Schmitz, A. Schukraft, W. Seligman, M. H. Shaevitz, J. Sinclair, A. Smith, E. L. Snider, M. Soderberg, S. Soldner-Rembold, S. R. Soleti, P. Spentzouris, J. Spitz, J. St. John, T. Strauss, A. M. Szelc, N. Tagg, K. Terao, M. Thomson, C. Thorn, M. Toups, Y. -T. Tsai, S. Tufanli, T. Usher, W. Van De Pontseele, R. G. Van de Water, B. Viren, M. Weber, D. A. Wickremasinghe, S. Wolbers, T. Wongjirad, K. Woodruff, T. Yang, L. Yates, B. Yu, G. P. Zeller, J. Zennamo, C. Zhang

The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase LArTPC comprises two induction planes and one collection sense wire plane with a total of 8256 wires. Read More

We present a method to carry out electrical and opto-electronic measurements on 2D materials using carbon fiber microprobes to directly make electrical contacts to the 2D materials without damaging them. The working principle of this microprobing method is illustrated by measuring transport in MoS2 flakes in vertical (transport in the out-of-plane direction) and lateral (transport within the crystal plane) configurations, finding performances comparable to those reported for MoS2 devices fabricated by conventional lithographic process. We also show that this method can be used with other 2D materials. Read More

This paper presents LongHCPulse: software which enables heat capacity to be collected on a Quantum Design PPMS using a long-pulse method. This method, wherein heat capacity is computed directly from the time derivative of sample temperature, is necessary for probing first order transitions and shortens the measurement time by a factor of five. LongHCPulse also includes plotting utilities based on the Matplotlib library. Read More