# Near-Optimal Distributed Maximum Flow

We present a near-optimal distributed algorithm for $(1+o(1))$-approximation of single-commodity maximum flow in undirected weighted networks that runs in $(D+ \sqrt{n})\cdot n^{o(1)}$ communication rounds in the \Congest model. Here, $n$ and $D$ denote the number of nodes and the network diameter, respectively. This is the first improvement over the trivial bound of $O(n^2)$, and it nearly matches the $\tilde{\Omega}(D+ \sqrt{n})$ round complexity lower bound. The development of the algorithm contains two results of independent interest: (i) A $(D+\sqrt{n})\cdot n^{o(1)}$-round distributed construction of a spanning tree of average stretch $n^{o(1)}$. (ii) A $(D+\sqrt{n})\cdot n^{o(1)}$-round distributed construction of an $n^{o(1)}$-congestion approximator consisting of the cuts induced by $O(\log n)$ virtual trees. The distributed representation of the cut approximator allows for evaluation in $(D+\sqrt{n})\cdot n^{o(1)}$ rounds. All our algorithms make use of randomization and succeed with high probability.

**Comments:**34 pages, 5 figures, conference version appeared in ACM Symp. on Principles of Distributed Computing (PODC) 2015

## Similar Publications

In this work, we introduce an online model for communication complexity. Analogous to how online algorithms receive their input piece-by-piece, our model presents one of the players Bob his input piece-by-piece, and has the players Alice and Bob cooperate to compute a result it presents Bob with the next piece. This model has a closer and more natural correspondence to dynamic data structures than the classic communication models do and hence presents a new perspective on data structures. Read More

We revisit the range $\tau$-majority problem, which asks us to preprocess an array $A[1..n]$ for a fixed value of $\tau \in (0,1/2]$, such that for any query range $[i,j]$ we can return a position in $A$ of each distinct $\tau$-majority element. Read More

We study the problem of clustering sequences of unlabeled point sets taken from a common metric space. Such scenarios arise naturally in applications where a system or process is observed in distinct time intervals, such as biological surveys and contagious disease surveillance. In this more general setting existing algorithms for classical (i. Read More

In this paper, we examine the hash functions expressed as scalar products,
i.e., $f(x)=

Hill and Kertz studied the prophet inequality on iid distributions [The Annals of Probability 1982]. They proved a theoretical bound of $1-\frac{1}{e}$ on the approximation factor of their algorithm. They conjectured that the best approximation factor for arbitrarily large n is $\frac{1}{1+1/e} \approx 0. Read More

We design the first online algorithm with poly-logarithmic competitive ratio for the edge-weighted degree-bounded Steiner forest(EW-DB-SF) problem and its generalized variant. We obtain our result by demonstrating a new generic approach for solving mixed packing/covering integer programs in the online paradigm. In EW-DB-SF we are given an edge-weighted graph with a degree bound for every vertex. Read More

A sum where each of the $N$ summands can be independently chosen from two choices yields $2^N$ possible summation outcomes. There is an $\mathcal{O}(K^2)$-algorithm that finds the $K$ smallest/largest of these sums by evading the enumeration of all sums. Read More

We consider the problem of implementing a space-efficient dynamic trie, with an emphasis on good practical performance. For a trie with $n$ nodes with an alphabet of size $\sigma$, the information-theoretic lower bound is $n \log \sigma + O(n)$ bits. The Bonsai data structure is a compact trie proposed by Darragh et al. Read More

Suffix trees have recently become very successful data structures in handling large data sequences such as DNA or Protein sequences. Consequently parallel architectures have become ubiquitous. We present a novel alphabet-dependent parallel algorithm which attempts to take advantage of the perverseness of the multicore architecture. Read More

In this paper, we first remodel the line coverage as a 1D discrete problem with co-linear targets. Then, an order-based greedy algorithm, called OGA, is proposed to solve the problem optimally. It will be shown that the existing order in the 1D modeling, and especially the resulted Markov property of the selected sensors can help design greedy algorithms such as OGA. Read More