The History of Tidal Disruption Events in Galactic Nuclei

The tidal disruption of a star by a massive black hole (MBH) is thought to produce a transient luminous event. Such tidal disruption events (TDEs) may play an important role in the detection and characterization of MBHs and probe the properties and dynamics of their nuclear stellar clusters (NSCs) hosts. Previous studies estimated the recent rates of TDEs in the local universe. However, the long-term evolution of the rates throughout the history of the universe has been hardly explored. Here we consider the TDE history, using evolutionary models for the evolution of galactic nuclei. We use a 1D Fokker-Planck approach to explore the evolution of MBH-hosting NSCs, and obtain the disruption rates of stars during their evolution. We complement these with an analysis of TDEs history based on N-body simulation data, and find them to be comparable. We consider NSCs that are built-up from close-in star-formation (SF) or from SF/clusters-dispersal far-out, a few pc from the MBH. We also explore cases where primordial NSCs exist and later evolve through additional star-formation/cluster-dispersal processes. We study the dependence of the TDE history on the type of galaxy, as well as the dependence on the MBH mass. These provide several scenarios, with a continuous increase of the TDE rates over time for cases of far-out SF and a more complex behavior for the close-in SF cases. Finally, we integrate the TDE histories of the various scenarios to provide a total TDE history of the universe, which can be potentially probed with future large surveys (e.g. LSST).

Comments: Comments are welcome, Accepted for publication in ApJ

Similar Publications

We present a study of the consequences of an initial mass function that is stochastically sampled on the main emission lines used for gas-phase metallicity estimates in extra-galactic sources. We use the stochastic stellar population code SLUG and the photoionisation code Cloudy to show that the stochastic sampling of the massive end of the mass function can lead to clear variations in the relative production of energetic emission lines such as [OIII] relative to that of Balmer lines. We use this to study the impact on the Te, N2O2, R23 and O3N2 metallicity calibrators. Read More


We present a detailed, broadband X-ray spectral analysis of the ULX pulsar NGC 7793 P13, a known super-Eddington source, utilizing data from the $XMM$-$Newton$, $NuSTAR$ and $Chandra$ observatories. The broadband $XMM$-$Newton+NuSTAR$ spectrum of P13 is qualitatively similar to the rest of the ULX sample with broadband coverage, suggesting that additional ULXs in the known population may host neutron star accretors. Through time-averaged, phase-resolved and multi-epoch studies, we find that two non-pulsed thermal blackbody components with temperatures $\sim$0. Read More


We present a detailed analysis of a H$_2$-rich, extremely strong intervening Damped Ly-$\alpha$ Absorption system (DLA) at $z_{\rm abs}=2.786$ towards the quasar J$\,$0843+0221, observed with the Ultraviolet and Visual Echelle Spectrograph on the Very Large Telescope. The total column density of molecular (resp. Read More


Extremely metal-poor (EMP) stars are old objects formed in the first Gyr of the Universe. They are rare and, to select them, the most successful strategy has been to build on large and low-resolution spectroscopic surveys. The combination of narrow- and broad band photometry provides a powerful and cheaper alternative to select metal-poor stars. Read More


(Abridged) Through spectrally unresolved observations of high-J CO transitions, Herschel-PACS has revealed large reservoirs of warm (300 K) and hot (700 K) molecular gas around low-mass protostars. We aim to shed light on the excitation and origin of the CO ladder observed toward protostars, and on the water abundance in different physical components using spectrally resolved Herschel-HIFI data. Observations are presented of the highly excited CO line J=16-15 with Herschel-HIFI toward 24 low-mass protostellar objects. Read More


Three formaldehyde lines were observed (H$_2$CO 3$_{03}$--2$_{02}$, H$_2$CO 3$_{22}$--2$_{21}$, and H$_2$CO 3$_{21}$--2$_{20}$) in the protoplanetary disk around the Herbig Ae star HD 163296 with ALMA at 0.5 arcsecond (60 AU) spatial resolution. H$_2$CO 3$_{03}$--2$_{02}$ was readily detected via imaging, while the weaker H$_2$CO 3$_{22}$--2$_{21}$ and H$_2$CO 3$_{21}$--2$_{20}$ lines required matched filter analysis to detect. Read More


After the discovery of powerful relativistic jets from Narrow-Line Seyfert 1 Galaxies, and the understanding of their similarity with those of blazars, a problem of terminology was born. The word blazar is today associated to BL Lac Objects and Flat-Spectrum Radio Quasars, which are somehow different from Narrow-Line Seyfert 1 Galaxies. Using the same word for all the three classes of AGN could drive either toward some misunderstanding, or to the oversight of some important characteristics. Read More


The presence of ubiquitous magnetic fields in the universe is suggested from observations of radiation and cosmic ray from galaxies or the intergalactic medium (IGM). One possible origin of cosmic magnetic fields is the magnetogenesis in the primordial universe. Such magnetic fields are called primordial magnetic fields (PMFs), and are considered to affect the evolution of matter density fluctuations and the thermal history of the IGM gas. Read More


Internal chemical abundance spreads are one of fundamental properties of globular clusters (GCs) in the Galaxy. In order to understand the origin of such abundance spreads, we numerically investigate GC formation from massive molecular clouds (MCs) with fractal structures using our new hydrodynamical simulations with star formation and feedback effects of supernovae (SNe) and asymptotic giant branch (AGB) stars. We particularly investigate star formation from gas chemically contaminated by SNe and AGB stars within MCs with different initial conditions and environments. Read More


We investigate the orbit equations and the eikonal equation for light respectively, under influence of the hairy black holes (asymptotically flat) in four dimensions. We consider two hairy black hole solutions with non-trivial potentials, and one of these solutions has Schwarzschild case as a smooth limit. Following to Landau and Lifshitz, we use the Hamilton-Jacobi method, and we show hairy corrections for periapsis shift, where the effect of the hair is to increase it. Read More