Dynamic Reallocation Problems in Scheduling

In this paper we look at the problem of scheduling tasks on a single-processor system, where each task requires unit time and must be scheduled within a certain time window, and each task can be added to or removed from the system at any time. On each operation, the system is allowed to reschedule any tasks, but the goal is to minimize the number of rescheduled tasks. Our main result is an allocator that maintains a valid schedule for all tasks in the system if their time windows have constant size and reschedules O(1/{\epsilon}*log(1/{\epsilon})) tasks on each insertion as {\epsilon}->0, where {\epsilon} is a certain measure of the schedule flexibility of the system. We also show that it is optimal for any allocator that works on arbitrary instances. We also briefly mention a few variants of the problem, such as if the tasks have time windows of difference sizes, for which we have an allocator that we conjecture reschedules only 1 task on each insertion if the schedule flexibility remains above a certain threshold.

Comments: 29 pages; updated references and other minor changes

Similar Publications

We study the strong duality of non-convex matrix factorization: we show under certain dual conditions, non-convex matrix factorization and its dual have the same optimum. This has been well understood for convex optimization, but little was known for matrix factorization. We formalize the strong duality of matrix factorization through a novel analytical framework, and show that the duality gap is zero for a wide class of matrix factorization problems. Read More


We show that the integrality gap of the bidirected cut relaxation for the Steiner tree problem is at most 6/5 via a primal-dual schema based algorithm. Read More


The study of Dense-$3$-Subhypergraph problem was initiated in Chlamt{\'{a}}c et al. [Approx'16]. The input is a universe $U$ and collection ${\cal S}$ of subsets of $U$, each of size $3$, and a number $k$. Read More


Finding central nodes is a fundamental problem in network analysis. Betweenness centrality is a well-known measure which quantifies the importance of a node based on the fraction of shortest paths going though it. Due to the dynamic nature of many today's networks, algorithms that quickly update centrality scores have become a necessity. Read More


Re-Pair is an efficient grammar compressor that operates by recursively replacing high-frequency character pairs with new grammar symbols. The most space-efficient linear-time algorithm computing Re-Pair uses $(1+\epsilon)n+\sqrt n$ words on top of the re-writable text (of length $n$ and stored in $n$ words), for any constant $\epsilon>0$; in practice however, this solution uses complex sub-procedures preventing it from being practical. In this paper, we present an implementation of the above-mentioned result making use of more practical solutions; our tool further improves the working space to $(1. Read More


The paper develops a new technique to extract a characteristic subset from a random source that repeatedly samples from a set of elements. Here a characteristic subset is a set that when containing an element contains all elements that have the same probability. With this technique at hand the paper looks at the special case of the tournament isomorphism problem that stands in the way towards a polynomial-time algorithm for the graph isomorphism problem. Read More


Through the development of efficient algorithms, data structures and preprocessing techniques, real-world shortest path problems in street networks are now very fast to solve. But in reality, the exact travel times along each arc in the network may not be known. This lead to the development of robust shortest path problems, where all possible arc travel times are contained in a so-called uncertainty set of possible outcomes. Read More


For a positive parameter $\beta$, the $\beta$-bounded distance between a pair of vertices $u,v$ in a weighted undirected graph $G = (V,E,\omega)$ is the length of the shortest $u-v$ path in $G$ with at most $\beta$ edges, aka {\em hops}. For $\beta$ as above and $\epsilon>0$, a {\em $(\beta,\epsilon)$-hopset} of $G = (V,E,\omega)$ is a graph $G' =(V,H,\omega_H)$ on the same vertex set, such that all distances in $G$ are $(1+\epsilon)$-approximated by $\beta$-bounded distances in $G\cup G'$. Hopsets are a fundamental graph-theoretic and graph-algorithmic construct, and they are widely used for distance-related problems in a variety of computational settings. Read More


We consider the communication complexity of finding an approximate maximum matching in a graph in a multi-party message-passing communication model. The maximum matching problem is one of the most fundamental graph combinatorial problems, with a variety of applications. The input to the problem is a graph $G$ that has $n$ vertices and the set of edges partitioned over $k$ sites, and an approximation ratio parameter $\alpha$. Read More


A novel landmark-based oracle (CFLAT) is presented, which provides earliest-arrival-time route plans in time-dependent road networks. To our knowledge, this is the first oracle that preprocesses combinatorial structures (collections of time-stamped min-travel-time-path trees) rather than travel-time functions. The preprocessed data structure is exploited by a new query algorithm (CFCA) which computes (and pays for it), apart from earliest-arrival-time estimations, the actual connecting path that preserves the theoretical approximation guarantees. Read More