Idioms-Proverbs Lexicon for Modern Standard Arabic and Colloquial Sentiment Analysis

Although, the fair amount of works in sentiment analysis (SA) and opinion mining (OM) systems in the last decade and with respect to the performance of these systems, but it still not desired performance, especially for morphologically-Rich Language (MRL) such as Arabic, due to the complexities and challenges exist in the nature of the languages itself. One of these challenges is the detection of idioms or proverbs phrases within the writer text or comment. An idiom or proverb is a form of speech or an expression that is peculiar to itself. Grammatically, it cannot be understood from the individual meanings of its elements and can yield different sentiment when treats as separate words. Consequently, In order to facilitate the task of detection and classification of lexical phrases for automated SA systems, this paper presents AIPSeLEX a novel idioms/ proverbs sentiment lexicon for modern standard Arabic (MSA) and colloquial. AIPSeLEX is manually collected and annotated at sentence level with semantic orientation (positive or negative). The efforts of manually building and annotating the lexicon are reported. Moreover, we build a classifier that extracts idioms and proverbs, phrases from text using n-gram and similarity measure methods. Finally, several experiments were carried out on various data, including Arabic tweets and Arabic microblogs (hotel reservation, product reviews, and TV program comments) from publicly available Arabic online reviews websites (social media, blogs, forums, e-commerce web sites) to evaluate the coverage and accuracy of AIPSeLEX.

Comments: arXiv admin note: text overlap with arXiv:1505.03105

Similar Publications

Dynamic neural network toolkits such as PyTorch, DyNet, and Chainer offer more flexibility for implementing models that cope with data of varying dimensions and structure, relative to toolkits that operate on statically declared computations (e.g., TensorFlow, CNTK, and Theano). Read More


We propose an active question answering agent that learns to reformulate questions and combine evidence to improve question answering. The agent sits between the user and a black box question-answering system and learns to optimally probe the system with natural language reformulations of the initial question and to aggregate the evidence to return the best possible answer. The system is trained end-to-end to maximize answer quality using policy gradient. Read More


Modern neural networks are often augmented with an attention mechanism, which tells the network where to focus within the input. We propose in this paper a new framework for sparse and structured attention, building upon a max operator regularized with a strongly convex function. We show that this operator is differentiable and that its gradient defines a mapping from real values to probabilities, suitable as an attention mechanism. Read More


With the increase of online customer opinions in specialised websites and social networks, the necessity of automatic systems to help to organise and classify customer reviews by domain-specific aspect/categories and sentiment polarity is more important than ever. Supervised approaches to Aspect Based Sentiment Analysis obtain good results for the domain/language their are trained on, but having manually labelled data for training supervised systems for all domains and languages use to be very costly and time consuming. In this work we describe W2VLDA, an unsupervised system based on topic modelling, that combined with some other unsupervised methods and a minimal configuration, performs aspect/category classifiation, aspectterms/opinion-words separation and sentiment polarity classification for any given domain and language. Read More


Assessing the degree of semantic relatedness between words is an important task with a variety of semantic applications, such as ontology learning for the Semantic Web, semantic search or query expansion. To accomplish this in an automated fashion, many relatedness measures have been proposed. However, most of these metrics only encode information contained in the underlying corpus and thus do not directly model human intuition. Read More


We introduce recurrent additive networks (RANs), a new gated RNN which is distinguished by the use of purely additive latent state updates. At every time step, the new state is computed as a gated component-wise sum of the input and the previous state, without any of the non-linearities commonly used in RNN transition dynamics. We formally show that RAN states are weighted sums of the input vectors, and that the gates only contribute to computing the weights of these sums. Read More


In this paper, we reformulated the spell correction problem as a machine translation task under the encoder-decoder framework. This reformulation enabled us to use a single model for solving the problem that is traditionally formulated as learning a language model and an error model. This model employs multi-layer recurrent neural networks as an encoder and a decoder. Read More


Word embeddings improve the performance of NLP systems by revealing the hidden structural relationships between words. These models have recently risen in popularity due to the performance of scalable algorithms trained in the big data setting. Despite their success, word embeddings have seen very little use in computational social science NLP tasks, presumably due to their reliance on big data, and to a lack of interpretability. Read More


In this project, a rather complete proof-theoretical formalization of Lambek Calculus (non-associative with arbitrary extensions) has been ported from Coq proof assistent to HOL4 theorem prover, with some improvements and new theorems. Three deduction systems (Syntactic Calculus, Natural Deduction and Sequent Calculus) of Lambek Calculus are defined with many related theorems proved. The equivalance between these systems are formally proved. Read More


In this paper, we extend an attention-based neural machine translation (NMT) model by allowing it to access an entire training set of parallel sentence pairs even after training. The proposed approach consists of two stages. In the first stage--retrieval stage--, an off-the-shelf, black-box search engine is used to retrieve a small subset of sentence pairs from a training set given a source sentence. Read More