The E00-110 experiment in Jefferson Lab's Hall A: Deeply Virtual Compton Scattering off the Proton at 6 GeV

We present final results on the photon electroproduction ($\vec{e}p\rightarrow ep\gamma$) cross section in the deeply virtual Compton scattering (DVCS) regime and the valence quark region from Jefferson Lab experiment E00-110. Results from an analysis of a subset of these data were published before, but the analysis has been improved which is described here at length, together with details on the experimental setup. Furthermore, additional data have been analyzed resulting in photon electroproduction cross sections at new kinematic settings, for a total of 588 experimental bins. Results of the $Q^2$- and $x_B$-dependences of both the helicity-dependent and helicity-independent cross sections are discussed. The $Q^2$-dependence illustrates the dominance of the twist-2 handbag amplitude in the kinematics of the experiment, as previously noted. Thanks to the excellent accuracy of this high luminosity experiment, it becomes clear that the unpolarized cross section shows a significant deviation from the Bethe-Heitler process in our kinematics, compatible with a large contribution from the leading twist-2 DVCS$^2$ term to the photon electroproduction cross section. The necessity to include higher-twist corrections in order to fully reproduce the shape of the data is also discussed. The DVCS cross sections in this paper represent the final set of experimental results from E00-110, superseding the previous publication.

Comments: 48 pages, 32 figures

Similar Publications

Ultra-peripheral Pb-Pb collisions, in which the two nuclei pass close to each other, but at an impact parameter greater than the sum of their radii, provide information about the initial state of nuclei. In particular, heavy vector meson production, where the particle mass sets a hard scale, proceeds in such collisions by photon-gluon interactions, and gives access to nuclear PDFs. The ALICE collaboration has published measurements of J/psi and psi(2S) photoproduction in ultra-peripheral collisions in LHC Run 1 at forward (J/psi) and mid-rapidity, and has obtained a substantially larger data set in 2015 from LHC Run 2, allowing much more detailed studies of the production mechanism to be performed. Read More


Highly energetic jets and photons are complementary probes for the kinematics and the topology of nuclear collisions. Jets are collimated sprays of charged and neutral particles, which are produced in the fragmentation of hard scattered partons in an early stage of the collision. While traversing the medium formed in nuclear collisions, they lose energy and therefore carry information about the interaction of partons with the medium. Read More


$\phi$-meson--nucleus bound state energies and absorption widths are calculated for seven selected nuclei by solving the Klein-Gordon equation with complex optical potentials. Essential input for the calculations, namely the medium-modified $K$ and $\overline{K}$ meson masses, as well as the density distributions in nuclei, are obtained from the quark-meson coupling model. The attractive potential for the $\phi$-meson in the nuclear medium originates from the in-medium enhanced $K\overline{K}$ loop in the $\phi$-meson self-energy. Read More


In this Letter I argue that the Surrogate Method, used to extract the fast neutron capture cross section on actinide target nuclei, which has important practical application for the next generation of breeder reactors, and the Trojan Horse Method employed to extract reactions of importance to nuclear astrophysics, have a common foundation, the Inclusive Non-Elastic Breakup (INEB)Theory. Whereas the Surrogate Method relies on the premise that the extracted neutron cross section in a (d,p) reaction is predominantly a compound nucleus one, the Trojan Horse Method, assumes a predominantly direct process for the secondary reaction induced by the surrogate fragment. In general, both methods contain both direct and compound contributions, and I show how theses seemingly distinct methods are in fact the same but at different energies and different kinematic regions. Read More


We review recent experimental and theoretical progress in understanding the microscopic details of clustering in nuclei. We discuss recent experimental results on alpha-conjugate systems, alpha-states in heavy systems, molecular structures in neutron-rich nuclei, and constraints for ab initio theory. We then examine nuclear clustering in a wide range of theoretical methods, including the resonating group and generator coordinate methods, antisymmetrized molecular dynamics, fermionic molecular dynamics, Tohsaki-Horiuchi-Schuck-R\"opke wave function and container model, no-core shell model methods, continuum quantum Monte Carlo, lattice effective field theory, and several approaches to clustering in heavier systems. Read More


An array of eight CsI(Tl) detectors has been set up to measure the light charged particles in nuclear reactions using heavy ions from the Pelletron Linac Facility, Mumbai. The energy response of CsI(Tl) detector to $\alpha$-particles from 5 to 40 MeV is measured using radioactive sources and the $^{12}$C($^{12}$C, $\alpha$) reaction populating discrete states in $^{20}$Ne. The energy non-linearity and the count rate effect on the pulse shape discrimination property have also been measured and observed the deterioration of pulse shape discrimination with higher count rate. Read More


Thirty years ago, the suppression of quarkonium production in heavy-ion collisions was first proposed as an unambiguous signature for the formation of a Quark-Gluon Plasma. Recent results from the LHC run 2 have led to an unprecedented level of precision on this observable and, together with new data from RHIC, are providing an accurate picture of the influence of the medium created in nuclear collisions on the various charmonium (J/$\psi$, $\psi$(2S)) and bottomonium ($\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$) states, studied via their decay into lepton pairs. In this contribution, I will review the new results presented at Quark Matter 2017, emphasizing their relation with previous experimental observations and comparing them, where possible, with theoretical calculations. Read More


The spectral shape of the electrons from the two first-forbidden unique beta- decays of Ar-39 and Ar-42 were calculated for the first time to the next-to-leading order. Especially the spectral shape of the Ar-39 decay can be used to characterise this background component for dark matter searches based on argon. Alternatively, due to the low thresholds of these experiments, the spectral shape can be investigated over a wide energy range with high statistics and thus allow a sensitive comparison with the theoretical predictions. Read More


Background: The $^{22}$Ne($\alpha,n$)$^{25}$Mg reaction is one of the neutron sources for the $s$-process in massive stars. The properties of levels in $^{26}$Mg above the $\alpha$-particle threshold control the strengths of the $^{22}$Ne($\alpha,n$)$^{25}$Mg and $^{22}$Ne($\alpha,\gamma$)$^{26}$Mg reactions. The strengths of these reactions as functions of temperature are one of the major uncertainties in the $s$-process. Read More


Spectroscopic properties of odd-mass nuclei are studied within the framework of the interacting boson-fermion model (IBFM) with parameters based on the Hartree-Fock-Bogoliubov (HFB) approximation. The parametrization D1M of the Gogny energy density functional (EDF) has been used at the mean-field level to obtain the deformation energy surfaces for the considered nuclei in terms of the quadrupole deformations ($\beta,\gamma$). In addition to the energy surfaces, both single particle energies and occupation probabilities have been used as a microscopic input for building the IBFM Hamiltonian. Read More