The Kozai-Lidov Mechanism in Hydrodynamical Disks. II. Effects of binary and disk parameters

Martin et al. (2014b) showed that a substantially misaligned accretion disk around one component of a binary system can undergo global damped Kozai-Lidov oscillations. During these oscillations, the inclination and eccentricity of the disk are periodically exchanged. However, the robustness of this mechanism and its dependence on the system parameters were unexplored. In this paper, we use three-dimensional hydrodynamical simulations to analyze how various binary and disk parameters affect the Kozai-Lidov mechanism in hydrodynamical disks. The simulations include the effect of gas pressure and viscosity, but ignore the effects of disk self-gravity. We describe results for different numerical resolutions, binary mass ratios and orbital eccentricities, initial disk sizes, initial disk surface density profiles, disk sound speeds, and disk viscosities. We show that the Kozai-Lidov mechanism can operate for a wide range of binary-disk parameters. We discuss the applications of our results to astrophysical disks in various accreting systems.

Comments: updated to match published version

Similar Publications

We present a hierarchical probabilistic model for improving geometric stellar distance estimates using color--magnitude information. This is achieved with a data driven model of the color--magnitude diagram, not relying on stellar models but instead on the relative abundances of stars in color--magnitude cells, which are inferred from very noisy magnitudes and parallaxes. While the resulting noise-deconvolved color--magnitude diagram can be useful for a range of applications, we focus on deriving improved stellar distance estimates relying on both parallax and photometric information. Read More

We determine instability domains on the Hertzsprung-Russel diagram for rotating main sequence stars with masses 2-20 $\mathrm M_\odot$. The effects of the Coriolis force are treated in the framework of the traditional approximation. High-order g-modes with the harmonic degrees, $\ell$, up to 4 and mixed gravity-Rossby modes with $|m|$ up to 4 are considered. Read More

I discuss two related nonlinear mechanisms of tidal dissipation that require finite tidal deformations for their operation: the elliptical instability and the precessional instability. Both are likely to be important for the tidal evolution of short-period extrasolar planets. The elliptical instability is a fluid instability of elliptical streamlines, such as in tidally deformed non-synchronously rotating or non-circularly orbiting planets. Read More

We carried out multiwavelength (0.7-5 cm), multiepoch (1994-2015) Very Large Array (VLA) observations toward the region enclosing the bright far-IR sources FIR 3 (HOPS 370) and FIR 4 (HOPS 108) in OMC-2. We report the detection of 10 radio sources, seven of them identified as young stellar objects. Read More

We investigate the change in the orbital period of a binary system due to dynamical tides by taking into account the evolution of a main-sequence star. Three stars with masses of one, one and a half, and two solar masses are considered. A star of one solar mass at lifetimes $t=4. Read More

We address the physical nature of subdwarf A-type (sdA) stars and their possible link to extremely low mass (ELM) white dwarfs (WDs). The two classes of objects are confused in low-resolution spectroscopy. However, colors and proper motions indicate that sdA stars are cooler and more luminous, and thus larger in radius, than published ELM WDs. Read More

Context. Mercury-manganese (HgMn) stars are a class of slowly rotating chemically peculiar main-sequence late B-type stars. More than two-thirds of the HgMn stars are known to belong to spectroscopic binaries. Read More

Affiliations: 1The Weizmann Institute for Science, 2The Weizmann Institute for Science, 3The Weizmann Institute for Science, 4The Weizmann Institute for Science, 5Radboud University

Recent studies of the stellar population in the solar neighborhood (<20 pc) suggest that there are undetected white dwarfs (WDs) in multiple systems with main sequence companions. Detecting these hidden stars and obtaining a more complete census of nearby WDs is important for our understanding of binary and galactic evolution, as well as the study of explosive phenomena. In an attempt to uncover these hidden WDs, we present intermediate resolution spectroscopy over the wavelength range 3000-25000 \AA\ of 101 nearby M dwarfs (dMs), observed with the Very Large Telescope X-Shooter spectrograph. Read More

Over the last decade, thanks to the successful space missions launched to detect stellar pulsations, Asteroseismology has produced an extraordinary revolution in astrophysics, unveiling a wealth of results on structural properties of stars over a large part of the H-R diagram. Particularly impressive has been the development of Asteroseismology for stars showing solar-like oscillations, which are excited and intrinsically damped in stars with convective envelopes. Here I will review on the modern era of Asteroseismology with emphasis on results obtained for solar-like stars and discuss its potential for the advancement of stellar physics. Read More