The Kozai-Lidov Mechanism in Hydrodynamical Disks. II. Effects of binary and disk parameters

Martin et al. (2014b) showed that a substantially misaligned accretion disk around one component of a binary system can undergo global damped Kozai-Lidov oscillations. During these oscillations, the inclination and eccentricity of the disk are periodically exchanged. However, the robustness of this mechanism and its dependence on the system parameters were unexplored. In this paper, we use three-dimensional hydrodynamical simulations to analyze how various binary and disk parameters affect the Kozai-Lidov mechanism in hydrodynamical disks. The simulations include the effect of gas pressure and viscosity, but ignore the effects of disk self-gravity. We describe results for different numerical resolutions, binary mass ratios and orbital eccentricities, initial disk sizes, initial disk surface density profiles, disk sound speeds, and disk viscosities. We show that the Kozai-Lidov mechanism can operate for a wide range of binary-disk parameters. We discuss the applications of our results to astrophysical disks in various accreting systems.

Comments: updated to match published version

Similar Publications

Context. Globular clusters host stars with chemical peculiarities. The associated helium enrichment is expected to affect the evolution of stars, in general, and of low-mass stars, and in particular the progenitors of white dwarfs (WDs). Read More

Evolutionary tracks from the zero age main sequence to the asymptotic giant branch were computed for stars with initial masses 2M_\odot <= Mzams <= 5M_\odot and metallicity Z=0.02. Some models of evolutionary sequences were used as initial conditions for equations of radiation hydrodynamics and turbulent convection describing radial stellar pulsations. Read More

Red Supergiant (RSG) stars are very massive cool evolved stars. Recently, a weak magnetic field has been measured at the surface of $\alpha$~Ori and this is so far the only M-type supergiant for which a direct detection of a surface magnetic field has been reported. By extending the search for surface magnetic field in a sample of late-type supergiants, we want to determine whether the surface magnetic field detected on $\alpha$~Ori is a common feature among the M-type supergiants. Read More

Between the 13 and 16 of February 2011 a series of coronal mass ejections (CMEs) erupted from multiple polarity inversion lines within active region 11158. For seven of these CMEs we use the Graduated Cylindrical Shell (GCS) flux rope model to determine the CME trajectory using both Solar Terrestrial Relations Observatory (STEREO) extreme ultraviolet (EUV) and coronagraph images. We then use the Forecasting a CME's Altered Trajectory (ForeCAT) model for nonradial CME dynamics driven by magnetic forces, to simulate the deflection and rotation of the seven CMEs. Read More

We present a homogeneous set of accurate atmospheric parameters for a complete sample of very and extremely metal-poor stars in the dwarf spheroidal galaxies (dSphs) Sculptor, Ursa Minor, Sextans, Fornax, Bo\"otes I, Ursa Major II, and Leo IV. We also deliver a Milky Way (MW) comparison sample of giant stars covering the -4 < [Fe/H] < -1.7 metallicity range. Read More

We present a new empirical model of total and spectral solar irradiance (TSI and SSI) variability entitled EMPirical Irradiance REconstruction (EMPIRE). As with existing empirical models, TSI and SSI variability is given by the linear combination of solar activity indices. In empirical models, UV SSI variability is usually determined by fitting the rotational variability in activity indices to that in measurements. Read More

We present the results of our investigation of the star-forming potential in the Perseus star-forming complex. We build on previous starless core, protostellar core, and young stellar object (YSO) catalogs from Spitzer, Herschel, and SCUBA observations in the literature. We place the cores and YSOs within seven star-forming clumps based on column densities greater than 5x10^21 cm^-2. Read More

In molecular outflows from forming low-mass protostars, most oxygen is expected to be locked up in water. However, Herschel observations have shown that typically an order of magnitude or more of the oxygen is still unaccounted for. To test if the oxygen is instead in atomic form, SOFIA-GREAT observed the R1 position of the bright molecular outflow from NGC1333-IRAS4A. Read More