Formation and evolution of nuclear star clusters with in-situ star-formation: Nuclear cores and age segregation

Nuclear stellar cluster (NSCs) are known to exist around massive black holes (MBHs) in galactic nuclei. Two formation scenarios were suggested for their origin: (1) Build-up of NSCs from consecutive infall of stellar cluster and (2) Continuous in-situ star-formation. Though the cluster-infall scenario has been extensively studied in recent years, the in-situ formation scenario have been hardly explored. Here we use Fokker-Planck (FP) calculations to study the effects of star formation on the build-up of NSCs and its implications for their long term evolution and their resulting structure. We use the FP equation to describe the evolution of several stellar populations, and add appropriate source terms to account for the effects of newly formed stars. We show that continuous star-formation even 1-2 pc away from the MBH can lead to the build-up of an NSC with properties similar to those of the Milky-way NSC. We also find that the general structure of the old stellar population in the NSC with in-situ star-formation could be very similar to the steady-state Bahcall-Wolf cuspy structure. However, its younger stellar population do not yet achieve a steady state. In particular, formed/evolved NSCs with in-situ star-formation contain differential age-segregated stellar populations which are not yet fully mixed. Younger stellar populations formed in the outer regions of the NSC have a cuspy structure towards the NSC outskirts, while showing a core-like distribution inwards; with younger populations having larger core sizes. In principal, such a structure can give rise to an apparent core-like radial distribution of younger (up to 2-3 Gyrs) stars, as observed in the Galactic center. Such an NSC still preserves an underlying stellar cusp of older stars, that can be potentially be missed by current observations of red-giants.

Comments: Comments are welcome, Accepted for publication in ApJ

Similar Publications

We present Karl G Jansky Very Large Array molecular line observations of the nearby starburst galaxy NGC 253, from SWAN: "Survey of Water and Ammonia in Nearby galaxies". SWAN is a molecular line survey at centimeter wavelengths designed to reveal the physical conditions of star forming gas over a range of star forming galaxies. NGC 253 has been observed in four 1GHz bands from 21 to 36 GHz at 6" ($\sim100$pc) spatial and 3. Read More


We present 22 new (+3 confirmed) cataclysmic variables (CVs) in the non core-collapsed globular cluster 47 Tucanae (47 Tuc). The total number of CVs in the cluster is now 43, the largest sample in any globular cluster so far. For the identifications we used near-ultraviolet (NUV) and optical images from the Hubble Space Telescope, in combination with X-ray results from the Chandra X-ray Observatory. Read More


Based on a sample of over 1,800 radio AGN at redshifts out to z~5, which have typical stellar masses within ~3x(10^{10}-10^{11}) Msol, and 3 GHz radio data in the COSMOS field, we derived the 1.4 GHz radio luminosity functions for radio AGN (L_1.4GHz ~ 10^{22}-10^{27} W/Hz) out to z~5. Read More


We present the results of 14 simulations of nonspinning black hole binaries with mass ratios $q=m_1/m_2$ in the range $1/100\leq q\leq1$. For each of these simulations we perform three runs at increasing resolution to assess the finite difference errors and to extrapolate the results to infinite resolution. For $q\geq 1/6$, we follow the evolution of the binary typically for the last ten orbits prior to merger. Read More


We use the Gemini Near-Infrared Integral Field Spectrograph (NIFS) to map the stellar kinematics of the inner few hundred parsecs of a sample of 16 nearby Seyfert galaxies, at a spatial resolution of tens of parsecs and spectral resolution of 40 km/s. We find that the line-of-sight (LOS) velocity fields for most galaxies are well reproduced by rotating disk models. The kinematic position angle (PA) derived for the LOS velocity field is consistent with the large scale photometric PA. Read More


We present here $Spitzer$ mid-infrared (IR) spectra and modeling of the spectral energy distribution (SED) of a selection of post-Asymptotic Giant Branch (PAGB) stars. The mid-IR spectra of majority of these sources showed spectral features such as polycyclic aromatic hydrocarbons (PAHs) and silicates in emission. Our results from SED modeling showed interesting trends of dependency between the photospheric and circumstellar parameters. Read More


We present the results of very long baseline interferometry (VLBI) observations of gamma-ray bright blazar S5 0716+714 using the Korean VLBI Network (KVN) at the 22, 43, 86, and 129 GHz bands, as part of the Interferometric Monitoring of Gamma-ray Bright AGNs (iMOGABA) KVN key science program. Observations were conducted in 29 sessions from January 16, 2013 to March 1, 2016, with the source being detected and imaged at all available frequencies. In all epochs, the source was compact on the milliarcsecond (mas) scale, yielding a compact VLBI core dominating the synchrotron emission on these scales. Read More


We present $\sim1-4"$ resolution Very Large Array (VLA) observations of four CH$_3$OH $J_2-J_1$-$E$ 25~GHz transitions ($J$=3, 5, 8, 10) along with 1.3~cm continuum toward 20 regions of active massive star formation containing Extended Green Objects (EGOs), 14 of which we have previously studied with the VLA in the Class~I 44~GHz and Class~II 6.7~GHz maser lines (Cyganowski et al. Read More


This paper presents machine learning experiments performed over results of galaxy classification into elliptical (E) and spiral (S) with morphological parameters: concetration (CN), assimetry metrics (A3), smoothness metrics (S3), entropy (H) and gradient pattern analysis parameter (GA). Except concentration, all parameters performed a image segmentation pre-processing. For supervision and to compute confusion matrices, we used as true label the galaxy classification from GalaxyZoo. Read More


We present a novel theoretical model to characterize the formation and coalescence sites of compact binaries in a cosmological context. This is based on the coupling between the binary population synthesis code SeBa with a simulation following the formation of a Milky Way-like halo in a well resolved cosmic volume of 4 cMpc, performed with the GAMESH pipeline. We have applied this technique to investigate when and where systems with properties similar to the recently observed LIGO/VIRGO events are more likely to form and where they are more likely to reside when they coalescence. Read More