The Polarization Dependence of Gamma-Gamma Absorption - Implications for Gamma-Ray Bursts and Blazars

This paper presents an analysis of the dependence of the opacity for high-energy gamma-rays to gamma-gamma absorption by low-energy photons, on the polarization of the gamma-ray and target photons. This process has so far only been considered using the polarization-averaged gamma-gamma absorption cross section. It is demonstrated that in the case of polarized gamma-ray emission, subject to source-intrinsic gamma-gamma absorption by polarized target photons, this may lead to a slight over-estimation of the gamma-gamma opacity by up to ~ 10 % in the case of a perfectly ordered magnetic field. Thus, for realistic astrophysical scenarios with partially ordered magnetic fields, the use of the polarization-averaged gamma-gamma cross section is justified for practical purposes, such as estimates of minimum Doppler factors inferred for gamma-ray bursts and blazars, based on gamma-gamma transparency arguments, and this paper quantifies the small error incurred by the unpolarized-radiation approximation. Furthermore, it is shown that polarization-dependent gamma-gamma absorption of initially polarized gamma-rays can lead to a slight increase in the polarization beyond the spectral break caused by gamma-gamma absorption, to an amount distinctly different from the change in polarization expected if the same spectral break was produced by a break in the underlying electron distribution. This may serve as a diagnostic of whether gamma-gamma absorption is relevant in sources such as gamma-ray bursts and blazars where the gamma-ray emission may be intrinsically highly polarized.

Comments: Accepted for publication in The Astrophysical Journal

Similar Publications

We show that observations of solar $\gamma$-ray fluxes offer a novel probe of dark matter, in scenarios where interactions with the visible sector proceed via a long-lived mediator. As a proof of principle, we demonstrate that there exists a class of models which yield solar $\gamma$-ray lines observable with the next generation of $\gamma$-ray telescopes, while being allowed by a large variety of experimental constraints. Our results suggest that fluxes of solar $\gamma$-ray lines can be up to two orders of magnitude higher than the ones from the galactic center, and are subject to very low backgrounds. Read More


The gamma-ray binary 1FGL J1018.6-5856 is known to be composed of a massive star with a compact object with an orbital period of 16.54 days. Read More


2017Mar
Affiliations: 1Astro Space Center of Lebedev Physical Institute, Moscow, Russia, 2Astro Space Center of Lebedev Physical Institute, Moscow, Russia, 3Max-Planck-Institut für Radioastronomie, Bonn, Germany, 4Aalto University Metsähovi Radio Observatory, Kylmälä, Finland, 5Astro Space Center of Lebedev Physical Institute, Moscow, Russia

We present a comprehensive 5-43 GHz VLBA study of the blazar 3C 273 initiated after an onset of a strong $\gamma$-ray flare in this source. We have analyzed the kinematics of new-born components, light curves, and position of the apparent core to pinpoint the location of the $\gamma$-ray emission. Estimated location of the $\gamma$-ray emission zone is close to the jet apex, 2 pc to 7 pc upstream from the observed 7 mm core. Read More


Great advances have been made in the study of ultra-high energy cosmic rays (UHECR) in the past two decades. These include the discovery of the spectral cut-off near 5 x 10^19 eV and complex structure at lower energies, as well as increasingly precise information about the composition of cosmic rays as a function of energy. Important improvements in techniques, including extensive surface detector arrays and high resolution air fluorescence detectors, have been instrumental in facilitating this progress. Read More


We report the detection of a dust scattering halo around a recently discovered X-ray transient, Swift J174540.7-290015, which in early February of 2016 underwent one of the brightest outbursts (F_X ~ 5e-10 erg/cm^2/s) observed from a compact object in the Galactic Center field. We analyze four Chandra images that were taken as follow-up observations to Swift discoveries of new Galactic Center transients. Read More


GRB 120323A is a very intense short Gamma Ray Burst (GRB) detected simultaneously during its prompt gamma-ray emission phase with the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope and the Konus experiment on board the Wind satellite. GBM and Konus operate in the keV--MeV regime, however, the GBM range is broader both toward the low and the high parts of the gamma-ray spectrum. Analysis of such bright events provide a unique opportunity to check the consistency of the data analysis as well as cross-calibrate the two instruments. Read More


2017Mar
Affiliations: 1Harvard/CfA, 2Harvard/CfA, 3Harvard/CfA, 4Harvard/CfA, 5Northwestern University, 6Ohio University, 7Harvard/CfA, 8Harvard/CfA, 9Carnegie Observatories

[Abridged] We present observations of PS16dtm, a luminous transient that occurred at the nucleus of a known Narrow-line Seyfert 1 galaxy hosting a 10$^6$ M$_\odot$ black hole. The transient was previously claimed to be a Type IIn SLSN due to its luminosity and hydrogen emission lines. The light curve shows that PS16dtm brightened by about two magnitudes in ~50 days relative to the archival host brightness and then exhibited a plateau phase for about 100 days followed by the onset of fading in the UV. Read More


Cosmic rays interacting in the solar atmosphere produce showers that result in a flux of high-energy neutrinos from the Sun. These form an irreducible background to indirect solar WIMP co-annihilation searches, which look for heavy dark matter particles annihilating into final states containing neutrinos in the Solar core. This background will eventually create a sensitivity floor for indirect WIMP co-annihilation searches analogous to that imposed by low-energy solar neutrino interactions for direct dark matter detection experiments. Read More


2017Mar

It is often assumed that gravitational wave (GW) events resulting from the merger of stellar-mass black holes are unlikely to produce electromagnetic (EM) counterparts. We point out that the progenitor binary has probably shed a mass $\gtrsim 10\,{\rm M}_{\odot}$ during its prior evolution. If a tiny fraction of this gas is retained until the merger, the recoil and sudden mass loss of the merged black hole shocks and heats it within hours of the GW event. Read More