Microlensless Interdigitated Photoconductive Terahertz Emitters

We report here fabrication of interdigitated photoconductive antenna (iPCA) terahertz (THz) emitters based on plasmonic electrode design. Novel design of this iPCA enables it to work without microlens array focusing, which is otherwise required for photo excitation of selective photoconductive regions to avoid the destructive interference of emitted THz radiation from oppositely biased regions. Benefit of iPCA over single active region PCA is that photo excitation can be done at larger area, hence avoiding the saturation effected at higher optical excitation density. The emitted THz radiation power from plasmonic-iPCAs is ~ 2 times more than the single active region plasmonic PCA at 200 mW optical excitation, which will further increase at higher optical powers. This design is expected to reduce fabrication cost of photoconductive THz sources and detectors.

Similar Publications

We study the effect of trigonal warping on the focussing of electrons by n-p junctions in graphene. We find that perfect focussing, which was predicted for massless Dirac fermions, is only preserved for one specific sample orientation. In the general case, trigonal warping leads to a different position of the focus for graphene's two valleys. Read More

Intersubband (ISB) polarons result from the interaction of an ISB transition and the longitudinal optical (LO) phonons in a semiconductor quantum well (QW). Their observation requires a very dense two dimensional electron gas (2DEG) in the QW and a polar or highly ionic semiconductor. Here we show that in ZnO/MgZnO QWs the strength of such a coupling can be as high as 1. Read More

The disordered quantum spin Hall (QSH) systems with spin-mixing tunneling (SMT) at potential saddle points, which belong to the Wigner-Dyson symplectic class AII, are revisited in detail using an existing spin-directed quantum network model generalized from the Chalker-Coddington random network model. A new phase diagram is obtained in which the ordinary insulating (OI) phase fills the whole parameter space and the QSH state only survives on a line segment of the boundary where SMT is absent. Thus a direct transition from QSH to OI phases exists and is driven by the SMT since it induces backscattering between the Kramers doublets at the same edge and thus completely destroys them. Read More

Understanding the thermally activated escape from a metastable state is at the heart of important phenomena such as the folding dynamics of proteins, the kinetics of chemical reactions or the stability of mechanical systems. In 1940 Kramers calculated escape rates both in the high damping and the low damping regime and suggested that the rate must have a maximum for intermediate damping. This phenomenon, today known as the Kramers turnover, has triggered important theoretical and numerical studies. Read More

In this article, we explore the anisotropic electron energy loss spectrum (EELS) in monolayer phosphorene based on ab-initio time dependent density functional theory calculations. Similar to black phosphorous, the EELS of undoped monolayer phosphorene is characterized by anisotropic excitonic peaks for energies in vicinity of the bandgap, and by interband plasmon peaks for higher energies. On doping, an additional intraband plasmon peak also appears for energies within the bandgap. Read More

We theoretically investigate Klein tunneling processes in photonic artificial graphene. Klein tunneling is a phenomenon in which a particle with Dirac dispersion going through a potential step shows a characteristic angle- and energy-dependent transmission. We consider a generic photonic system consisting of a honeycomb-shaped array of sites with losses, illuminated by coherent monochromatic light. Read More

One of the most promising platforms for one-dimensional topological superconductivity is based on semiconducting nanowires with strong spin-orbit coupling (SOC), where s-wave superconductivity is induced by proximity effect and an external Zeeman field drives the system into the topological superconducting phase with Majorana bound states (MBSs) at the end of the wire. During last years this idea has led to a great number of important experiments in hybrid superconductor-semiconductor systems, where the main signature is an emergent zero-bias peak (ZBP) in the differential conductance as the Zeeman field is increased. This thesis focuses on the study of hybrid superconductor-semiconductor junctions made of semiconducting nanowires with Rashba SOC. Read More

We present the theory of a new type of topological quantum order which is driven by the spin-orbit density wave order parameter, and distinguished by $Z_2$ topological invariant. We show that when two oppositely polarized chiral bands [resulting from the Rashba-type spin-orbit coupling $\alpha_k$, $k$ is crystal momentum] are significantly nested by a special wavevector ${\bf Q}\sim(\pi,0)/(0,\pi)$, it induces a spatially modulated inversion of the chirality ($\alpha_{k+Q}=\alpha_k^*$) between different sublattices. The resulting quantum order parameters break translational symmetry, but preserve time-reversal symmetry. Read More

We employ two-dimensional (2D) coherent, nonlinear spectroscopy to investigate couplings within individual InAs quantum dots (QD) and QD molecules. Swapping pulse ordering in a two-beam sequence permits to distinguish between rephasing and non-rephasing four-wave mixing (FWM) configurations. We emphasize the non-rephasing case, allowing to monitor two-photon coherence dynamics. Read More

The Rashba effect leads to a chiral precession of the spins of moving electrons while the Dzyaloshinskii-Moriya interaction (DMI) generates preference towards a chiral profile of local spins. We predict that the exchange interaction between these two spin systems results in a 'chiral' magnetoresistance depending on the chirality of the local spin texture. We observe this magnetoresistance by measuring the domain wall (DW) resistance in a uniquely designed Pt/Co/Pt zigzag wire, and by changing the chirality of the DW with applying an in-plane magnetic field. Read More