Universal relationship in gene-expression changes for cells in steady-growth state

Cells adapt to different conditions by altering a vast number of components, which is measurable using transcriptome analysis. Given that a cell undergoing steady growth is constrained to sustain each of its internal components, the abundance of all the components in the cell has to be roughly doubled during each cell division event. From this steady-growth constraint, expression of all genes is shown to change along a one-parameter curve in the state space in response to the environmental stress. This leads to a global relationship that governs the cellular state: By considering a relatively moderate change around a steady state, logarithmic changes in expression are shown to be proportional across all genes, upon alteration of stress strength, with the proportionality coefficient given by the change in the growth rate of the cell. This theory is confirmed by transcriptome analysis of Escherichia Coli in response to several stresses.

Comments: 7 pages (5 figures) + 2 Supplementary pages (figures)

Similar Publications

Understanding how antibiotics inhibit bacteria can help to reduce antibiotic use and hence avoid antimicrobial resistance - yet few theoretical models exist for bacterial growth inhibition by a clinically relevant antibiotic treatment regimen. In particular, in the clinic, antibiotic treatment is time dependent. Here, we use a recently-developed model to obtain predictions for the dynamical response of a bacterial cell to a time-dependent dose of ribosome-targeting antibiotic. Read More

Background: The Epithelial-Mesenchymal Transition (EMT) endows epithelial-looking cells with enhanced migratory ability during embryonic development and tissue repair. EMT can also be co-opted by cancer cells to acquire metastatic potential and drug-resistance. Recent research has argued that epithelial (E) cells can undergo either a partial EMT to attain a hybrid epithelial/mesenchymal (E/M) phenotype that typically displays collective migration, or a complete EMT to adopt a mesenchymal (M) phenotype that shows individual migration. Read More

For various species of biological cells, experimental observations indicate the existence of universal distributions of the cellular size, scaling relations between the cell-size moments and simple rules for the cell-size control. We address a class of models for the control of cell division, and present the steady state distributions. By introducing concepts such as effective force and potential, we are able to address the appearance of scaling collapse of different distributions and the connection between various moments of the cell-size. Read More

The dispersal of cells from an initially constrained location is a crucial aspect of many physiological phenomena ranging from morphogenesis to tumour spreading. In such processes, the way cell-cell interactions impact the motion of single cells, and in turn the collective dynamics, remains unclear. Here, the spreading of micro-patterned colonies of non-cohesive cells is fully characterized from the complete set of individual trajectories. Read More

Biological functions are typically performed by groups of cells that express predominantly the same genes, yet display a continuum of phenotypes. While it is known how one genotype can generate such non-genetic diversity, it remains unclear how different phenotypes contribute to the performance of biological function at the population level. We developed a microfluidic device to simultaneously measure the phenotype and chemotactic performance of tens of thousands of individual, freely-swimming Escherichia coli as they climbed a gradient of attractant. Read More

Bacteria tightly regulate and coordinate the various events in their cell cycles to duplicate themselves accurately and to control their cell sizes. Growth of Escherichia coli, in particular, follows a relation known as Schaechter 's growth law. This law says that the average cell volume scales exponentially with growth rate, with a scaling exponent equal to the time from initiation of a round of DNA replication to the cell division at which the corresponding sister chromosomes segregate. Read More

From biofilm and colony formation in bacteria to wound healing and embryonic development in multicellular organisms, groups of living cells must often move collectively. While considerable study has probed the biophysical mechanisms of how eukaryotic cells generate forces during migration, little such study has been devoted to bacteria, in particular with regard to the question of how bacteria generate and coordinate forces during collective motion. This question is addressed here for the first time using traction force microscopy. Read More

In population biology, the Allee dynamics refer to negative growth rates below a critical population density. In this Letter, we study a reaction-diffusion (RD) model of population growth and dispersion in one dimension, which incorporates the Allee effect in both the growth and mortality rates. In the absence of diffusion, the bifurcation diagram displays regions of both finite population density and zero population density, i. Read More

Cell migration in morphogenesis and cancer metastasis typically involves interplay between different cell types. We construct and study a minimal, one-dimensional model comprised of two different motile cells with each cell represented as an active elastic dimer. The interaction between the two cells via cadherins is modeled as a spring that can rupture beyond a threshold force as it undergoes dynamic loading via the attached motile cells. Read More

Cell polarization and directional cell migration can display random, persistent and oscillatory dynamic patterns. However, it is not clear if these polarity patterns can be explained by the same underlying regulatory mechanism. Here, we show that random, persistent and oscillatory migration accompanied by polarization can simultaneously occur in populations of melanoma cells derived from tumors with different degrees of aggressiveness. Read More