Universal relationship in gene-expression changes for cells in steady-growth state

Cells adapt to different conditions by altering a vast number of components, which is measurable using transcriptome analysis. Given that a cell undergoing steady growth is constrained to sustain each of its internal components, the abundance of all the components in the cell has to be roughly doubled during each cell division event. From this steady-growth constraint, expression of all genes is shown to change along a one-parameter curve in the state space in response to the environmental stress. This leads to a global relationship that governs the cellular state: By considering a relatively moderate change around a steady state, logarithmic changes in expression are shown to be proportional across all genes, upon alteration of stress strength, with the proportionality coefficient given by the change in the growth rate of the cell. This theory is confirmed by transcriptome analysis of Escherichia Coli in response to several stresses.

Comments: 7 pages (5 figures) + 2 Supplementary pages (figures)

Similar Publications

Myxobacteria are social bacteria, that can glide in 2D and form counter-propagating, interacting waves. Here we present a novel age-structured, continuous macroscopic model for the movement of myxobacteria. The derivation is based on microscopic interaction rules that can be formulated as a particle-based model and set within the SOH (Self-Organized Hydrodynamics) framework. Read More

Cells exhibit qualitatively different behaviors on substrates with different rigidities. The fact that cells are more polarized on the stiffer substrate motivates us to construct a two-dimensional cell with the distribution of focal adhesions dependent on substrate rigidities. This distribution affects the forces exerted by the cell and thereby determines its motion. Read More

This paper investigates cells proliferation dynamics in small tumor cell aggregates using an individual based model (IBM). The simulation model is designed to study the morphology of the cell population and of the cell lineages as well as the impact of the orientation of the division plane on this morphology. Our IBM model is based on the hypothesis that cells are incompressible objects that grow in size and divide once a threshold size is reached, and that newly born cell adhere to the existing cell cluster. Read More

Chemotaxis, a basic and universal phenomenon among living organisms, directly controls the transport kinetics of active fluids such as swarming bacteria, but has not been considered when utilizing passive tracer to probe the nonequilibrium properties of such fluids. Here we present the first theoretical investigation of the diffusion dynamics of a chemoattractant-coated tracer in bacterial suspension, by developing a molecular dynamics model of bacterial chemotaxis. We demonstrate that the non-Gaussian statistics of full-coated tracer arises from the noises exerted by bacteria, which is athermal and exponentially correlated. Read More

Finding the origin of slow and infra-slow oscillations could reveal or explain brain mechanisms in health and disease. Here, we present a biophysically constrained computational model of a neural network where the inclusion of astrocytes introduced slow and infra-slow-oscillations, through two distinct mechanisms. Specifically, we show how astrocytes can modulate the fast network activity through their slow inter-cellular calcium wave speed and amplitude and possibly cause the oscillatory imbalances observed in diseases commonly known for such abnormalities, namely Alzheimer's disease, Parkinson's disease, epilepsy, depression and ischemic stroke. Read More

We consider the chemotaxis problem for a one-dimensional system. To analyze the interaction of bacteria and attractant we use a modified Keller-Segel model which accounts attractant absorption. To describe the system we use the chemotaxis sensitivity function, which characterizes nonuniformity of bacteria distribution. Read More

We introduce a simple mechanical model for adherent cells that quantitatively relates cell shape, internal cell stresses and cell forces as generated by an anisotropic cytoskeleton. We perform experiments on the shape and traction forces of different types of cells with anisotropic morphologies, cultured on microfabricated elastomeric pillar arrays. We demonstrate that, irrespectively of the cell type, the shape of the cell edge between focal adhesions is accurately described by elliptical arcs, whose eccentricity expresses the ratio between directed and isotropic stresses. Read More

Epithelial tissues form physically integrated barriers against the external environment protecting organs from infection and invasion. Within each tissue, epithelial cells respond to different challenges that can potentially compromise tissue integrity. In particular, cells collectively respond by reorganizing their cell-cell junctions and migrating directionally towards the sites of injury. Read More

The major biochemical networks of the living cell, the network of interacting genes and the network of biochemical reactions, are highly interdependent, however, they have been studied mostly as separate systems so far. In the last years an appropriate theoretical framework for studying interdependent networks has been developed in the context of statistical physics. Here we study the interdependent network of gene regulation and metabolism of the model organism Escherichia coli using the theoretical framework of interdependent networks. Read More

In this work we use a combination of statistical physics and dynamical systems approaches, to analyze the response to an antigen of a simplified model of the adaptive immune system, which comprises B, T helper and T regulatory lymphocytes. Results show that the model is remarkably robust against changes in the kinetic parameters, noise levels, and mechanisms that activate T regulatory lymphocytes. In contrast, the model is extremely sensitive to changes in the ratio between T helper and T regulatory lymphocytes, exhibiting in particular a phase transition, from a responsive to an immuno-suppressed phase, when the ratio is lowered below a critical value. Read More