Optimal low-rank approximations of Bayesian linear inverse problems

In the Bayesian approach to inverse problems, data are often informative, relative to the prior, only on a low-dimensional subspace of the parameter space. Significant computational savings can be achieved by using this subspace to characterize and approximate the posterior distribution of the parameters. We first investigate approximation of the posterior covariance matrix as a low-rank update of the prior covariance matrix. We prove optimality of a particular update, based on the leading eigendirections of the matrix pencil defined by the Hessian of the negative log-likelihood and the prior precision, for a broad class of loss functions. This class includes the F\"{o}rstner metric for symmetric positive definite matrices, as well as the Kullback-Leibler divergence and the Hellinger distance between the associated distributions. We also propose two fast approximations of the posterior mean and prove their optimality with respect to a weighted Bayes risk under squared-error loss. These approximations are deployed in an offline-online manner, where a more costly but data-independent offline calculation is followed by fast online evaluations. As a result, these approximations are particularly useful when repeated posterior mean evaluations are required for multiple data sets. We demonstrate our theoretical results with several numerical examples, including high-dimensional X-ray tomography and an inverse heat conduction problem. In both of these examples, the intrinsic low-dimensional structure of the inference problem can be exploited while producing results that are essentially indistinguishable from solutions computed in the full space.

Similar Publications

We collect examples of boundary-value problems of Dirichlet and Dirichlet-Neumann type which we found instructive when designing and analysing numerical methods for fully nonlinear elliptic partial differential equations. In particular, our model problem is the Monge-Amp\`ere equation, which is treated through its equivalent reformulation as a Hamilton-Jacobi-Bellman equation. Our examples illustrate how the different notions of boundary conditions appearing in the literature may admit different sets of viscosity sub- and supersolutions. Read More

We propose general computational procedures based on descriptor state-space realizations to compute coprime factorizations of rational matrices with minimum degree denominators. Enhanced recursive pole dislocation techniques are developed, which allow to successively place all poles of the factors into a given "good" domain of the complex plane. The resulting McMillan degree of the denominator factor is equal to the number of poles lying in the complementary "bad" region and therefore is minimal. Read More

We propose and analyze a heterogenous multiscale method for the efficient integration of constant-delay differential equations subject to fast periodic forcing. The stroboscopic averaging method (SAM) suggested here may provide approximations with \(\mathcal{O}(H^2+1/\Omega^2)\) errors with a computational effort that grows like \(H^{-1}\) (the inverse of the stepsize), uniformly in the forcing frequency \(\Omega\). Read More

The paper discusses the construction of high dimensional spatial discretizations for arbitrary multivariate trigonometric polynomials, where the frequency support of the trigonometric polynomial is known. We suggest a construction based on the union of several rank-1 lattices as sampling scheme. We call such schemes multiple rank-1 lattices. Read More

The Green's function of a transformer is essential for prediction of its vibration. As the Green's function cannot be measured directly and completely, the finite element analysis (FEA) is typically used for its estimation. However, because of the complexity of the transformer structure, the calculations involved in FEA are time consuming. Read More

For time-dependent partial differential equations, parallel-in-time integration using the "parallel full approximation scheme in space and time" (PFASST) is a promising way to accelerate existing space-parallel approaches beyond their scaling limits. Inspired by the classical Parareal method and multigrid ideas, PFASST allows to integrate multiple time-steps simultaneously using a space-time hierarchy of spectral deferred correction sweeps. While many use cases and benchmarks exist, a solid and reliable mathematical foundation is still missing. Read More

We develop a finite element method for the Laplace--Beltrami operator on a surface described by a set of patchwise parametrizations. The patches provide a partition of the surface and each patch is the image by a diffeomorphism of a subdomain of the unit square which is bounded by a number of smooth trim curves. A patchwise tensor product mesh is constructed by using a structured mesh in the reference domain. Read More

Given a tetrahedral mesh and objective functionals measuring the mesh quality which take into account the shape, size, and orientation of the mesh elements, our aim is to improve the mesh quality as much as possible. In this paper, we combine the moving mesh smoothing, based on the integration of an ordinary differential equation coming from a given functional, with the lazy flip technique, a reversible edge removal algorithm to modify the mesh connectivity. Moreover, we utilize radial basis function (RBF) surface reconstruction to improve tetrahedral meshes with curved boundary surfaces. Read More

In recent years, the use of sparse recovery techniques in the approximation of high-dimensional functions has garnered increasing interest. In this work, we present a survey of recent progress in this emerging topic. Our main focus is on the computation of polynomial approximations of high-dimensional functions on d-dimensional hypercubes. Read More

In this work, we outline the entropy viscosity method and discuss how the choice of scaling influences the size of viscosity for a simple shock problem. We present examples to illustrate the performance of the entropy viscosity method under two distinct scalings. Read More