# Symmetry-protected topological phases with charge and spin symmetries: response theory and dynamical gauge theory in 2D, 3D and the surface of 3D

A large class of symmetry-protected topological phases (SPT) in boson / spin systems have been recently predicted by the group cohomology theory. In this work, we consider SPT states at least with charge symmetry (U(1) or Z$_N$) or spin $S^z$ rotation symmetry (U(1) or Z$_N$) in 2D, 3D, and the surface of 3D. If both are U(1), we apply external electromagnetic field / `spin gauge field' to study the charge / spin response. For the SPT examples we consider (i.e. U$_c$(1)$\rtimes$Z$^T_2$, U$_s$(1)$\times$Z$^T_2$, U$_c$(1)$\times$[U$_s$(1)$\rtimes$Z$_2$]; subscripts $c$ and $s$ are short for charge and spin; Z$^T_2$ and Z$_2$ are time-reversal symmetry and $\pi$-rotation about $S^y$, respectively), many variants of Witten effect in the 3D SPT bulk and various versions of anomalous surface quantum Hall effect are defined and systematically investigated. If charge or spin symmetry reduces to Z$_N$ by considering charge-$N$ or spin-$N$ condensate, instead of the linear response approach, we gauge the charge/spin symmetry, leading to a dynamical gauge theory with some remaining global symmetry. The 3D dynamical gauge theory describes a symmetry-enriched topological phase (SET), i.e. a topologically ordered state with global symmetry which admits nontrivial ground state degeneracy depending on spatial manifold topology. For the SPT examples we consider, the corresponding SET states are described by dynamical topological gauge theory with topological BF term and axionic $\Theta$-term in 3D bulk. And the surface of SET is described by the chiral boson theory with quantum anomaly.

**Comments:**23 pages, 1 figure, REVTeX; Table II and Table III for summary of part of key results

## Similar Publications

We study the classification of symmetry protected topological (SPT) phases with crystalline symmetry (cSPT phases). Focusing on bosonic cSPT phases in two and three dimensions, we introduce a simple family of cSPT states, where the system is comprised of decoupled lower-dimensional building blocks that are themselves SPT states. We introduce a procedure to classify these block states, which surprisingly reproduces a classification of cSPT phases recently obtained by Thorngren and Else using very different methods, for all wallpaper and space groups. Read More

The ground state of the diatomic molecules in nature is inevitably bonding and its first excited state is antibonding. We demonstrate theoretically that for a pair of distant adatoms placed buried in 3D-Dirac semimetals, this natural order of the states can be reversed and antibonding ground state occurs at the lowest energy of the so-called bound states in the continuum. We propose experimental protocol with use of STM-tip to visualize the topographic map of the local density of states on the surface of the system to reveal the emerging Physics. Read More

We report discovery of a topological Mott insulator in strongly-correlated Dirac semimetals. Such an interaction-driven topological state has been theoretically proposed but not yet observed with unbiased large scale numerical simulations. In our model, interactions between electrons are mediated by Ising spins in a transverse field. Read More

We develop a no-go theorem for two-dimensional bosonic systems with crystal symmetries: if there is a half-integer spin at a rotation center, where the point-group symmetry is $\mathbb D_{2,4,6}$, such a system must have a ground-state degeneracy protected by the crystal symmetry. Such a degeneracy indicates either a broken-symmetry state or a unconventional state of matter. Comparing to the Lieb-Schultz-Mattis Theorem, our result counts the spin at each rotation center, instead of the total spin per unit cell, and therefore also applies to certain systems with an even number of half-integer spins per unit cell. Read More

We study the time evolution after a quantum quench in a family of models whose degrees of freedom are fermions coupled to spins, where quenched disorder appears neither in the Hamiltonian parameters nor in the initial state. Focussing on the behaviour of entanglement, both spatial and between subsystems, we show that the model supports a state exhibiting combined area/volume law entanglement, being characteristic of the quantum disentangled liquid. This behaviour appears for one set of variables, which is related via a duality mapping to another set, where this structure is absent. Read More

FeSe has a unique ground state in which superconductivity coexists with a nematic order without long-range magnetic ordering at ambient pressure. Here, to study how the pairing interaction evolves with nematicity, we measured the thermal conductivity and specific heat of FeSe$_{1-x}$S$_x$, where the nematicity is suppressed by isoelectronic sulfur substitution. We find that in the whole nematic ($0\leq x \leq 0. Read More

We comparatively study the excitonic insulator state in the extended Falicov-Kimball model (EFKM, a spinless two-band model) on the two-dimensional square lattice using the variational cluster approximation (VCA) and the cluster dynamical impurity approximation (CDIA). In the latter, the particle-bath sites are included in the reference cluster to take into account the particle-number fluctuations in the correlation sites. We thus calculate the particle-number distribution, order parameter, ground-state phase diagram, anomalous Green's function, and pair coherence length, thereby demonstrating the usefulness of the CDIA in the discussion of the excitonic condensation in the EFKM. Read More

The subject of topological materials has attracted immense attention in condensed-matter physics, because they host new quantum states of matter containing Dirac, Majorana, or Weyl fermions. Although Majorana fermions can only exist on the surface of topological superconductors, Dirac and Weyl fermions can be realized in both 2D and 3D materials. The latter are semimetals with Dirac/Weyl cones either not tilted (type I) or tilted (type II). Read More

Higgs resonance modes in condensed matter systems are generally broad; meaning large decay widths or short relaxation times. This common feature has obscured and limited their observation to a select few systems. Contrary to this, the present work predicts that Higgs resonances in magnetic field induced, three-dimensional magnon Bose-condensates have vanishingly small decay widths. Read More

**Authors:**R. Takagi, D. Morikawa, K. Karube, N. Kanazawa, K. Shibata, G. Tatara, Y. Tokunaga, T. Arima, Y. Taguchi, Y. Tokura, S. Seki

Propagation character of spin wave was investigated for chiral magnets FeGe and Co-Zn-Mn alloys, which can host magnetic skyrmions near room temperature. On the basis of the frequency shift between counter-propagating spin waves, the magnitude and sign of Dzyaloshinskii-Moriya (DM) interaction were directly evaluated. The obtained magnetic parameters quantitatively account for the size and helicity of skyrmions as well as their materials variation, proving that the DM interaction plays a decisive role in the skyrmion formation in this class of room-temperature chiral magnets. Read More