# Distributed Minimum Cut Approximation

We study the problem of computing approximate minimum edge cuts by distributed algorithms. We use a standard synchronous message passing model where in each round, $O(\log n)$ bits can be transmitted over each edge (a.k.a. the CONGEST model). We present a distributed algorithm that, for any weighted graph and any $\epsilon \in (0, 1)$, with high probability finds a cut of size at most $O(\epsilon^{-1}\lambda)$ in $O(D) + \tilde{O}(n^{1/2 + \epsilon})$ rounds, where $\lambda$ is the size of the minimum cut. This algorithm is based on a simple approach for analyzing random edge sampling, which we call the random layering technique. In addition, we also present another distributed algorithm, which is based on a centralized algorithm due to Matula [SODA '93], that with high probability computes a cut of size at most $(2+\epsilon)\lambda$ in $\tilde{O}((D+\sqrt{n})/\epsilon^5)$ rounds for any $\epsilon>0$. The time complexities of both of these algorithms almost match the $\tilde{\Omega}(D + \sqrt{n})$ lower bound of Das Sarma et al. [STOC '11], thus leading to an answer to an open question raised by Elkin [SIGACT-News '04] and Das Sarma et al. [STOC '11]. Furthermore, we also strengthen the lower bound of Das Sarma et al. by extending it to unweighted graphs. We show that the same lower bound also holds for unweighted multigraphs (or equivalently for weighted graphs in which $O(w\log n)$ bits can be transmitted in each round over an edge of weight $w$), even if the diameter is $D=O(\log n)$. For unweighted simple graphs, we show that even for networks of diameter $\tilde{O}(\frac{1}{\lambda}\cdot \sqrt{\frac{n}{\alpha\lambda}})$, finding an $\alpha$-approximate minimum cut in networks of edge connectivity $\lambda$ or computing an $\alpha$-approximation of the edge connectivity requires $\tilde{\Omega}(D + \sqrt{\frac{n}{\alpha\lambda}})$ rounds.

## Similar Publications

In this work, we introduce an online model for communication complexity. Analogous to how online algorithms receive their input piece-by-piece, our model presents one of the players Bob his input piece-by-piece, and has the players Alice and Bob cooperate to compute a result it presents Bob with the next piece. This model has a closer and more natural correspondence to dynamic data structures than the classic communication models do and hence presents a new perspective on data structures. Read More

We revisit the range $\tau$-majority problem, which asks us to preprocess an array $A[1..n]$ for a fixed value of $\tau \in (0,1/2]$, such that for any query range $[i,j]$ we can return a position in $A$ of each distinct $\tau$-majority element. Read More

We study the problem of clustering sequences of unlabeled point sets taken from a common metric space. Such scenarios arise naturally in applications where a system or process is observed in distinct time intervals, such as biological surveys and contagious disease surveillance. In this more general setting existing algorithms for classical (i. Read More

In this paper, we examine the hash functions expressed as scalar products,
i.e., $f(x)=

Hill and Kertz studied the prophet inequality on iid distributions [The Annals of Probability 1982]. They proved a theoretical bound of $1-\frac{1}{e}$ on the approximation factor of their algorithm. They conjectured that the best approximation factor for arbitrarily large n is $\frac{1}{1+1/e} \approx 0. Read More

We design the first online algorithm with poly-logarithmic competitive ratio for the edge-weighted degree-bounded Steiner forest(EW-DB-SF) problem and its generalized variant. We obtain our result by demonstrating a new generic approach for solving mixed packing/covering integer programs in the online paradigm. In EW-DB-SF we are given an edge-weighted graph with a degree bound for every vertex. Read More

A sum where each of the $N$ summands can be independently chosen from two choices yields $2^N$ possible summation outcomes. There is an $\mathcal{O}(K^2)$-algorithm that finds the $K$ smallest/largest of these sums by evading the enumeration of all sums. Read More

We consider the problem of implementing a space-efficient dynamic trie, with an emphasis on good practical performance. For a trie with $n$ nodes with an alphabet of size $\sigma$, the information-theoretic lower bound is $n \log \sigma + O(n)$ bits. The Bonsai data structure is a compact trie proposed by Darragh et al. Read More

Suffix trees have recently become very successful data structures in handling large data sequences such as DNA or Protein sequences. Consequently parallel architectures have become ubiquitous. We present a novel alphabet-dependent parallel algorithm which attempts to take advantage of the perverseness of the multicore architecture. Read More

In this paper, we first remodel the line coverage as a 1D discrete problem with co-linear targets. Then, an order-based greedy algorithm, called OGA, is proposed to solve the problem optimally. It will be shown that the existing order in the 1D modeling, and especially the resulted Markov property of the selected sensors can help design greedy algorithms such as OGA. Read More