On variational dimension reduction in structure mechanics

The classical low-dimensional models of thin structures are based on certain a priori assumptions on the three-dimensional deformation and/or stress fields, diverse in nature but all motivated by the smallness of certain dimensions with respect to others. In recent years, a considerable amount of work has been done in order to rigorously justify these a priori assumptions; in particular, several techniques have been introduced to make dimension re- duction rigorous. We here review, and to some extent reformulate, the main ideas common to these techniques, using some explicit dimension-reduction problems to exemplify the points we want to make.

Comments: 12 pages, 2 figures

Similar Publications

This is the first of two articles on the study of a particle system model that exhibits a Turing instability type effect. The model is based on two discrete lines (or toruses) with Ising spins, that evolve according to a continuous time Markov process defined in terms of macroscopic Kac potentials and local interactions. For fixed time, we prove that the density fields weakly converge to the solution of a system of partial differential equations involving convolutions. Read More


We study the spectral properties of the energy of the motion of the quantum Mixmaster universe in the anisotropy potential. We first derive the explicit asymptotic expressions for the spectrum in the limit of large and small volumes of the universe. Then we rigorously prove that the spectrum is purely discrete for any volume of the universe. Read More


We present a list of formulae useful for Weyl-Heisenberg integral quantizations, with arbitrary weight, of functions or distributions on the plane. Most of these formulae are known, others are original. The list encompasses particular cases like Weyl-Wigner quantization (constant weight) and coherent states (CS) or Berezin quantization (Gaussian weight). Read More


D. Ruelle considered a general setting where he is able to describe a formulation of the concept of Gibbs state based on conjugating homeomorphism in the so called Smale spaces. On this setting he shows a relation of KMS states of $C^*$-algebras and equilibrium probabilities of Thermodynamic Formalism. Read More


This paper investigates bicovariant differential calculus on noncommutative spaces of the Lie algebra type. For a given Lie algebra $g_0$ we construct a Lie superalgebra $g=g_0\oplus g_1$ containing noncommutative coordinates and one--forms. We show that $g$ can be extended by a set of generators $T_{AB}$ whose action on the enveloping algebra $U(g)$ gives the commutation relations between monomials in $U(g_0)$ and one--forms. Read More


In this thesis we study properties of open quantum dissipative evolutions of spin systems on lattices described by Lindblad generators, in a particular regime that we denote rapid mixing. We consider dissipative evolutions with a unique fixed point, and which compress the whole space of input states into increasingly small neighborhoods of the fixed point. The time scale at which this compression takes place, or in other words the time we have to wait for any input state to become almost indistinguishable from the fixed point, is called the mixing time of the process. Read More


We investigate the nonequilibrium steady state (NESS) in an open quantum XXZ chain with strong $XY$ plane boundary polarization gradient. Using the general theory developed in [1], we show that in the critical $XXZ$ $|\Delta|<1$ easy plane case, the steady current in large systems under strong driving shows resonance-like behaviour, by an infinitesimal change of the spin chain anisotropy or other parameters. Alternatively, by fine tuning the system parameters and varying the boundary dissipation strength, we observe a change of the NESS current from diffusive (of order $1/N$, for small dissipation strength) to ballistic regime (of order 1, for large dissipation strength). Read More


The cuscuton was introduced in the context of cosmology as a field with infinite speed of propagation. It has been claimed to resemble Ho\v{r}ava gravity in a certain limit, and it is a good candidate for an ether theory in which a time-dependent cosmological constant appears naturally. The analysis of its properties is usually performed in the Lagrangian framework, which makes issues like the counting of its dynamical degrees of freedom less clear-cut. Read More


We study the global symmetries of naive lattices Dirac operators in QCD-like theories in any dimension larger than two. In particular we investigate how the chosen number of lattice sites in each direction affects the global symmetries of the Dirac operator. These symmetries are important since they do not only determine the infra-red spectrum of the Dirac operator but also the symmetry breaking pattern and, thus, the lightest pseudo-scalar mesons. Read More


A one-channel operator is a self-adjoint operator on $\ell^2(\mathbb{G})$ for some countable set $\mathbb{G}$ with a rank 1 transition structure along the sets of a quasi-spherical partition of $\mathbb{G}$. Jacobi operators are a very special case. In essence, there is only one channel through which waves can travel across the shells to infinity. Read More