Increase of the Density, Temperature and Velocity of Plasma Jets driven by a Ring of High Energy Laser Beams

Supersonic plasma outflows driven by multi-beam, high-energy lasers, such as Omega and NIF, have been and will be used as platforms for a variety of laboratory astrophysics experiments. Here we propose a new way of launching high density and high velocity, plasma jets using multiple intense laser beams in a hollow ring formation. We show that such jets provide a more flexible and versatile platform for future laboratory astrophysics experiments. Using high resolution hydrodynamic simulations, we demonstrate that the collimated jets can achieve much higher density, temperature and velocity when multiple laser beams are focused to form a hollow ring pattern at the target, instead of focused onto a single spot. We carried out simulations with different ring radii and studied their effects on the jet properties. Implications for laboratory collisionless shock experiments are discussed.

Comments: 5 pages, 4 figures, Accepted to HEDP

Similar Publications

Theoretical models of self-interacting dark matter represent a promising answer to a series of open problems within the so-called collisionless cold dark matter (CCDM) paradigm. In case of asymmetric dark matter, self-interactions might facilitate gravitational collapse and potentially lead to formation of compact objects predominantly made of dark matter. Considering both fermionic and bosonic equations of state, we construct the equilibrium structure of rotating dark stars, focusing on their bulk properties, and comparing them with baryonic neutron stars. Read More


The Auger Engineering Radio Array (AERA) aims at the detection of air showers induced by high-energy cosmic rays. As an extension of the Pierre Auger Observatory, it measures complementary information to the particle detectors, fluorescence telescopes and to the muon scintillators of the Auger Muons and Infill for the Ground Array (AMIGA). AERA is sensitive to all fundamental parameters of an extensive air shower such as the arrival direction, energy and depth of shower maximum. Read More


Gamma-ray bursts (GRBs) are the most violent explosions in the universe, seen primarily as bright, short flashes of gamma-rays. Long GRBs are most likely associated with the violent death of a very massive star. They are thus believed to originate within regions of recent or ongoing star formation with various bright, young stars, for instance, OB associations. Read More


We present a measurement of the cosmic-ray electron+positron spectrum between 7 GeV and 2 TeV performed with almost seven years of data collected with the Fermi Large Area Telescope. We find that the spectrum is well fit by a broken power law with a break energy at about 50 GeV. Above 50 GeV, the spectrum is well described by a single power law with a spectral index of $3. Read More


Recently the possibility of detecting echoes of ringdown gravitational waves from binary black hole mergers was shown. The presence of echoes is expected if the black hole is surrounded by a mirror that reflects gravitational waves near the horizon. Here, we present a little more sophisticated templates motivated by a waveform which is obtained by solving the linear perturbation equation around a Kerr black hole with a complete reflecting boundary condition. Read More


We calculate moment of inertia of neutron star with different exotic constituents such as hyperons and (anti)kaon condensates and study its variation with mass and spin frequency. The sets of equation of state, generated within the framework of relativistic mean field model with density-dependent couplings are adopted for the purpose. We follow the quasi-stationary evolution of rotating stars along the constant rest mass sequences, that varies considerably with different constituents in the equation of state. Read More


We review the experimental evidences about flux and mass composition of ultra high energy cosmic rays in connection with theoretical scenarios concerning astrophysical sources. In this context, we also address the discussion about the expected transition between cosmic rays produced inside the Galaxy and those coming from the intergalactic space. Read More


Studies were made of the 1-70 keV persistent spectra of fifteen magnetars as a complete sample observed with Suzaku from 2006 to 2013. Combined with early NuSTAR observations of four hard X-ray emitters, nine objects showed a hard power-law emission dominating at $\gtrsim$10 keV with the 15--60 keV flux of $\sim$1-$11\times 10^{-11}$ ergs s$^{-1}$ cm$^{-2}$. The hard X-ray luminosity $L_{\rm h}$, relative to that of a soft-thermal surface radiation $L_{\rm s}$, tends to become higher toward younger and strongly magnetized objects. Read More


We aim to explain in a unified way the experimental data on ultrahigh energy cosmic rays (UHECR) and neutrinos, using a single source class and obeying limits on the extragalactic diffuse gamma-ray background (EGRB). If UHECRs only interact hadronically with gas around their sources, the resulting diffuse CR flux can be matched well to the observed one, providing at the same time large neutrino fluxes. However, air showers in the Earth's atmosphere induced by UHECRs with energies $E>3\times 10^{18}$ eV would reach in such a case their maxima too high. Read More


In the Ellis wormhole (WH) metrics the motion of a particle along curved rotating channels is studied. By taking into account a prescribed shape of a trajectory we derive the reduced $1+1$ metrics, obtain the corresponding Langrangian of a free particle and analytically and numerically solve the corresponding equations of motion. We have shown that if the channels are twisted and lag behind rotation, under certain conditions beads might asymptotically reach infinity, leaving the WH, which is not possible for straight co-rotating trajectories. Read More