# Adaptive Smolyak Pseudospectral Approximations

Polynomial approximations of computationally intensive models are central to uncertainty quantification. This paper describes an adaptive method for non-intrusive pseudospectral approximation, based on Smolyak's algorithm with generalized sparse grids. We rigorously analyze and extend the non-adaptive method proposed in [6], and compare it to a common alternative approach for using sparse grids to construct polynomial approximations, direct quadrature. Analysis of direct quadrature shows that O(1) errors are an intrinsic property of some configurations of the method, as a consequence of internal aliasing. We provide precise conditions, based on the chosen polynomial basis and quadrature rules, under which this aliasing error occurs. We then establish theoretical results on the accuracy of Smolyak pseudospectral approximation, and show that the Smolyak approximation avoids internal aliasing and makes far more effective use of sparse function evaluations. These results are applicable to broad choices of quadrature rule and generalized sparse grids. Exploiting this flexibility, we introduce a greedy heuristic for adaptive refinement of the pseudospectral approximation. We numerically demonstrate convergence of the algorithm on the Genz test functions, and illustrate the accuracy and efficiency of the adaptive approach on a realistic chemical kinetics problem.

## Similar Publications

We study the effect of adaptive mesh refinement on a parallel domain decomposition solver of a linear system of algebraic equations. These concepts need to be combined within a parallel adaptive finite element software. A prototype implementation is presented for this purpose. Read More

Kernel quadratures and other kernel-based approximation methods typically suffer from prohibitive cubic time and quadratic space complexity in the number of function evaluations. The problem arises because a system of linear equations needs to be solved. In this article we show that the weights of a kernel quadrature rule can be computed efficiently and exactly for up to tens of millions of nodes if the kernel, integration domain, and measure are fully symmetric and the node set is a union of fully symmetric sets. Read More

Singular values of a data in a matrix form provide insights on the structure of the data, the effective dimensionality, and the choice of hyper-parameters on higher-level data analysis tools. However, in many practical applications such as collaborative filtering and network analysis, we only get a partial observation. Under such scenarios, we consider the fundamental problem of recovering spectral properties of the underlying matrix from a sampling of its entries. Read More

A novel and scalable geometric multi-level algorithm is presented for the numerical solution of elliptic partial differential equations, specially designed to run with high occupancy of streaming processors inside Graphics Processing Units(GPUs). The algorithm consists of iterative, superposed operations on a single grid, and it is composed of two simple full-grid routines: a restriction and a coarsened interpolation-relaxation. The restriction is used to collect sources using recursive coarsened averages, and the interpolation-relaxation simultaneously applies coarsened finite-difference operators and interpolations. Read More

Matrix and tensor completion aim to recover a low-rank matrix / tensor from limited observations and have been commonly used in applications such as recommender systems and multi-relational data mining. A state-of-the-art matrix completion algorithm is Soft-Impute, which exploits the special "sparse plus low-rank" structure of the matrix iterates to allow efficient SVD in each iteration. Though Soft-Impute is a proximal algorithm, it is generally believed that acceleration destroys the special structure and is thus not useful. Read More

Stochastic variance reduction algorithms have recently become popular for minimizing the average of a large, but finite number of loss functions. The present paper proposes a Riemannian stochastic quasi-Newton algorithm with variance reduction (R-SQN-VR). The key challenges of averaging, adding, and subtracting multiple gradients are addressed with notions of retraction and vector transport. Read More

This work proposes a space-time least-squares Petrov-Galerkin (ST-LSPG) projection method for model reduction of nonlinear dynamical systems. In contrast to typical nonlinear model-reduction methods that first apply (Petrov-)Galerkin projection in the spatial dimension and subsequently apply time integration to numerically resolve the resulting low-dimensional dynamical system, the proposed method applies projection in space and time simultaneously. To accomplish this, the method first introduces a low-dimensional space-time trial subspace, which can be obtained by computing tensor decompositions of state-snapshot data. Read More

In exploratory tensor mining, a common problem is how to analyze a set of variables across a set of subjects whose observations do not align naturally. For example, when modeling medical features across a set of patients, the number and duration of treatments may vary widely in time, meaning there is no meaningful way to align their clinical records across time points for analysis purposes. To handle such data, the state-of-the-art tensor model is the so-called PARAFAC2, which yields interpretable and robust output and can naturally handle sparse data. Read More

In this letter, we propose an algorithm for recovery of sparse and low rank components of matrices using an iterative method with adaptive thresholding. In each iteration, the low rank and sparse components are obtained using a thresholding operator. This algorithm is fast and can be implemented easily. Read More

Approximate computing has shown to provide new ways to improve performance and power consumption of error-resilient applications. While many of these applications can be found in image processing, data classification or machine learning, we demonstrate its suitability to a problem from scientific computing. Utilizing the self-correcting behavior of iterative algorithms, we show that approximate computing can be applied to the calculation of inverse matrix p-th roots which are required in many applications in scientific computing. Read More