Lower Bounds on Information Dissemination in Dynamic Networks

We study lower bounds on information dissemination in adversarial dynamic networks. Initially, k pieces of information (henceforth called tokens) are distributed among n nodes. The tokens need to be broadcast to all nodes through a synchronous network in which the topology can change arbitrarily from round to round provided that some connectivity requirements are satisfied. If the network is guaranteed to be connected in every round and each node can broadcast a single token per round to its neighbors, there is a simple token dissemination algorithm that manages to deliver all k tokens to all the nodes in O(nk) rounds. Interestingly, in a recent paper, Dutta et al. proved an almost matching Omega(n + nk/log n) lower bound for deterministic token-forwarding algorithms that are not allowed to combine, split, or change tokens in any way. In the present paper, we extend this bound in different ways. If nodes are allowed to forward b < k tokens instead of only one token in every round, a straight-forward extension of the O(nk) algorithm disseminates all k tokens in time O(nk/b). We show that for any randomized token-forwarding algorithm, Omega(n + nk/(b^2 log n log log n)) rounds are necessary. If nodes can only send a single token per round, but we are guaranteed that the network graph is c-vertex connected in every round, we show a lower bound of Omega(nk/(c log^{3/2} n)), which almost matches the currently best O(nk/c) upper bound. Further, if the network is T-interval connected, a notion that captures connection stability over time, we prove that Omega(n + nk/(T^2 log n)) rounds are needed. The best known upper bound in this case manages to solve the problem in O(n + nk/T) rounds. Finally, we show that even if each node only needs to obtain a delta-fraction of all the tokens for some delta in [0,1], Omega(nk delta^3 log n) are still required.


Similar Publications

Randomized binary exponential backoff (BEB) is a popular algorithm for coordinating access to a shared channel. With an operational history exceeding four decades, BEB is currently an important component of several wireless standards. Despite this track record, prior theoretical results indicate that under bursty traffic (1) BEB yields poor makespan and (2) superior algorithms are possible. Read More


An $(r, \ell)$-partition of a graph $G$ is a partition of its vertex set into $r$ independent sets and $\ell$ cliques. A graph is $(r, \ell)$ if it admits an $(r, \ell)$-partition. A graph is well-covered if every maximal independent set is also maximum. Read More


Triangle-free graphs play a central role in graph theory, and triangle detection (or triangle finding) as well as triangle enumeration (triangle listing) play central roles in the field of graph algorithms. In distributed computing, algorithms with sublinear round complexity for triangle finding and listing have recently been developed in the powerful CONGEST clique model, where communication is allowed between any two nodes of the network. In this paper we present the first algorithms with sublinear complexity for triangle finding and triangle listing in the standard CONGEST model, where the communication topology is the same as the topology of the network. Read More


This paper formulates a novel problem on graphs: find the minimal subset of edges in a fully connected graph, such that the resulting graph contains all spanning trees for a set of specifed sub-graphs. This formulation is motivated by an un-supervised grammar induction problem from computational linguistics. We present a reduction to some known problems and algorithms from graph theory, provide computational complexity results, and describe an approximation algorithm. Read More


In this work, we provide a general framework for adding a linearizable iterator to data structures with set operations. We propose a condition on these set operations, called locality, so that any data structure implemented from local atomic operations can be augmented with a linearizable iterator as described by our framework. We then apply the iterator framework to various data structures, prove locality of their operations, and demonstrate that the iterator framework does not significantly affect the performance of concurrent operations. Read More


In the k-partition problem (k-PP), one is given an edge-weighted undirected graph, and one must partition the node set into at most k subsets, in order to minimise (or maximise) the total weight of the edges that have their end-nodes in the same cluster. Various hierarchical variants of this problem have been studied in the context of data mining. We consider a 'two-level' variant that arises in mobile wireless communications. Read More


We introduce a technique to turn dynamic programming tasks on labeled directed acyclic graphs (labeled DAGs) closer to their sequence analogies. We demonstrate the technique on three problems: longest increasing subsequence, longest common subsequence, and co-linear chaining extended to labeled DAGs. For the former we obtain an algorithm with running time $O(|E| k \log |V|+ |V| k \log^2 |V|)$, where $V$ and $E$ are the set of vertices and edges, respectively, and $k$ is the minimum size of a path cover of $V$. Read More


We show that Boolean matrix multiplication, computed as a sum of products of column vectors with row vectors, is essentially the same as Warshall's algorithm for computing the transitive closure matrix of a graph from its adjacency matrix. Warshall's algorithm can be generalized to Floyd's algorithm for computing the distance matrix of a graph with weighted edges. We will generalize Boolean matrices in the same way, keeping matrix multiplication essentially equivalent to the Floyd-Warshall algorithm. Read More


Integer Linear Programming is a famous NP-complete problem. Lenstra showed that in the case of small dimension, it can be solved in polynomial time. This algorithm became a ubiquitous tool, especially in the design of parameterized algorithms for NP-complete problems, where we wish to isolate the hardness of an instance to some parameter. Read More


Given a string $T$, it is known that its suffix tree can be represented using the compact directed acyclic word graph (CDAWG) with $e_T$ arcs, taking overall $O(e_T+e_{{\overline{T}}})$ words of space, where ${\overline{T}}$ is the reverse of $T$, and supporting some key operations in time between $O(1)$ and $O(\log{\log{n}})$ in the worst case. This representation is especially appealing for highly repetitive strings, like collections of similar genomes or of version-controlled documents, in which $e_T$ grows sublinearly in the length of $T$ in practice. In this paper we augment such representation, supporting a number of additional queries in worst-case time between $O(1)$ and $O(\log{n})$ in the RAM model, without increasing space complexity asymptotically. Read More