# Beeping a Maximal Independent Set

We consider the problem of computing a maximal independent set (MIS) in an extremely harsh broadcast model that relies only on carrier sensing. The model consists of an anonymous broadcast network in which nodes have no knowledge about the topology of the network or even an upper bound on its size. Furthermore, it is assumed that an adversary chooses at which time slot each node wakes up. At each time slot a node can either beep, that is, emit a signal, or be silent. At a particular time slot, beeping nodes receive no feedback, while silent nodes can only differentiate between none of its neighbors beeping, or at least one of its neighbors beeping. We start by proving a lower bound that shows that in this model, it is not possible to locally converge to an MIS in sub-polynomial time. We then study four different relaxations of the model which allow us to circumvent the lower bound and find an MIS in polylogarithmic time. First, we show that if a polynomial upper bound on the network size is known, it is possible to find an MIS in O(log^3 n) time. Second, if we assume sleeping nodes are awoken by neighboring beeps, then we can also find an MIS in O(log^3 n) time. Third, if in addition to this wakeup assumption we allow sender-side collision detection, that is, beeping nodes can distinguish whether at least one neighboring node is beeping concurrently or not, we can find an MIS in O(log^2 n) time. Finally, if instead we endow nodes with synchronous clocks, it is also possible to find an MIS in O(log^2 n) time.

**Comments:**arXiv admin note: substantial text overlap with arXiv:1108.1926

## Similar Publications

In the communication problem $\mathbf{UR}$ (universal relation) [KRW95], Alice and Bob respectively receive $x$ and $y$ in $\{0,1\}^n$ with the promise that $x\neq y$. The last player to receive a message must output an index $i$ such that $x_i\neq y_i$. We prove that the randomized one-way communication complexity of this problem in the public coin model is exactly $\Theta(\min\{n, \log(1/\delta)\log^2(\frac{n}{\log(1/\delta)})\})$ bits for failure probability $\delta$. Read More

This thesis is in the area called computational social choice which is an intersection area of algorithms and social choice theory. Read More

Let $G$ be an $n$-node simple directed planar graph with nonnegative edge weights. We study the fundamental problems of computing (1) a global cut of $G$ with minimum weight and (2) a~cycle of $G$ with minimum weight. The best previously known algorithm for the former problem, running in $O(n\log^3 n)$ time, can be obtained from the algorithm of \Lacki, Nussbaum, Sankowski, and Wulff-Nilsen for single-source all-sinks maximum flows. Read More

We initiate the study of distance-sensitive hashing, a generalization of locality-sensitive hashing that seeks a family of hash functions such that the probability of two points having the same hash value is a given function of the distance between them. More precisely, given a distance space $(X, \text{dist})$ and a "collision probability function" (CPF) $f\colon \mathbb{R}\rightarrow [0,1]$ we seek a distribution over pairs of functions $(h,g)$ such that for every pair of points $x, y \in X$ the collision probability is $\Pr[h(x)=g(y)] = f(\text{dist}(x,y))$. Locality-sensitive hashing is the study of how fast a CPF can decrease as the distance grows. Read More

The Local Computation Algorithms (LCA) model is a computational model aimed at problem instances with huge inputs and output. For graph problems, the input graph is accessed using probes: strong probes (SP) specify a vertex $v$ and receive as a reply a list of $v$'s neighbors, and weak probes (WP) specify a vertex $v$ and a port number $i$ and receive as a reply $v$'s $i^{th}$ neighbor. Given a local query (e. Read More

This paper describes a method for clustering data that are spread out over large regions and which dimensions are on different scales of measurement. Such an algorithm was developed to implement a robotics application consisting in sorting and storing objects in an unsupervised way. The toy dataset used to validate such application consists of Lego bricks of different shapes and colors. Read More

In recent years crowdsourcing has become the method of choice for gathering labeled training data for learning algorithms. Standard approaches to crowdsourcing view the process of acquiring labeled data separately from the process of learning a classifier from the gathered data. This can give rise to computational and statistical challenges. Read More

Graph spanners have been studied extensively, and have many applications in algorithms, distributed systems, and computer networks. For many of these application, we want distributed constructions of spanners, i.e. Read More

We study the problem of constructing synthetic graphs that resemble real-world directed graphs in terms of their degree correlations. We define the problem of directed 2K construction (D2K) that takes as input the directed degree sequence (DDS) and a joint degree and attribute matrix (JDAM) so as to capture degree correlation specifically in directed graphs. We provide necessary and sufficient conditions to decide whether a target D2K is realizable, and we design an efficient algorithm that creates realizations with that target D2K. Read More

This paper introduces and approximately solves a multi-component problem where small rectangular items are produced from large rectangular bins via guillotine cuts. An item is characterized by its width, height, due date, and earliness and tardiness penalties per unit time. Each item induces a cost that is proportional to its earliness and tardiness. Read More