Long-wavelength limit of gyrokinetics in a turbulent tokamak and its intrinsic ambipolarity

Recently, the electrostatic gyrokinetic Hamiltonian and change of coordinates have been computed to order $\epsilon^2$ in general magnetic geometry. Here $\epsilon$ is the gyrokinetic expansion parameter, the gyroradius over the macroscopic scale length. Starting from these results, the long-wavelength limit of the gyrokinetic Fokker-Planck and quasineutrality equations is taken for tokamak geometry. Employing the set of equations derived in the present article, it is possible to calculate the long-wavelength components of the distribution functions and of the poloidal electric field to order $\epsilon^2$. These higher-order pieces contain both neoclassical and turbulent contributions, and constitute one of the necessary ingredients (the other is given by the short-wavelength components up to second order) that will eventually enter a complete model for the radial transport of toroidal angular momentum in a tokamak in the low flow ordering. Finally, we provide an explicit and detailed proof that the system consisting of second-order gyrokinetic Fokker-Planck and quasineutrality equations leaves the long-wavelength radial electric field undetermined; that is, the turbulent tokamak is intrinsically ambipolar.

Comments: 70 pages. Typos in equations (63), (90), (91), (92) and (129) corrected

Similar Publications

The XGC1 edge gyrokinetic code is used for a high fidelity prediction for the width of the heat-flux to divertor plates in attached plasma condition. The simulation results are validated against the empirical scaling $\lambda_q \propto 1/B_P^\gamma$ obtained from present tokamak devices, where $\lambda_q$ is the divertor heat-flux width mapped to the outboard midplane and $\gamma=1.19$ as defined by T. Read More


Simulations using the fully kinetic neoclassical code XGCa were undertaken to explore the impact of kinetic effects on scrape-off layer (SOL) physics in DIII-D H-mode plasmas. XGCa is a total-f, gyrokinetic code which self-consistently calculates the axisymmetric electrostatic potential and plasma dynamics, and includes modules for Monte Carlo neutral transport. Previously presented XGCa results showed several noteworthy features, including large variations of ion density and pressure along field lines in the SOL, experimentally relevant levels of SOL parallel ion flow (Mach number~0. Read More


Transport barrier formation and its relation to sheared flows in fluids and plasmas are of fundamental interest in various natural and laboratory observations and of critical importance in achieving an economical energy production in a magnetic fusion device. Here we report the first observation of an edge transport barrier formation event in a gyrokinetic simulation carried out in a realistic tokamak edge geometry. The results show that turbulent Reynolds stress driven sheared ExB flows act in concert with neoclassical orbit loss to quench turbulent transport and form a transport barrier just inside the last closed magnetic flux surface. Read More


In a wide class of physical systems, diffeomorphisms in the state space leave the amount of entropy produced per unit time inside the bulk of the system unaffected [M. Polettini et al., 12th Joint European Thermodynamics Conference, Brescia, Italy, July 1-5, 2013]. Read More


Magnetic turbulence in the solar wind is treated from the point of view of electrodynamics. This can be done based on the use of Poynting's theorem attributing all turbulent dynamics to the spectrum of turbulent conductivity. For two directions of propagation of the turbulent fluctuations of the electromagnetic field with respect to the mean plus external magnetic fields an expression is constructed for the spectrum of turbulent dissipation. Read More


We report an accessible and robust tool for evaluating the effects of Coulomb collisions on a test particle in a plasma that obeys Maxwell-J\"uttner statistics. The implementation is based on the Beliaev-Budker collision integral which allows both the test particle and the background plasma to be relativistic. The integration method supports adaptive time stepping, which is shown to greatly improve the computational efficiency. Read More


The wealth of work in backward Raman amplification in plasma has focused on the extreme intensity limit, however backward Raman amplification may also provide an effective and practical mechanism for generating intense, broad bandwidth, long-wavelength infrared radiation (LWIR). An electromagnetic simulation coupled with a relativistic cold fluid plasma model is used to demonstrate the generation of picosecond pulses at a wavelength of 10 microns with terawatt powers through backward Raman amplification. The effects of collisional damping, Landau damping, pump depletion, and wave breaking are examined, as well as the resulting design considerations for a LWIR Raman amplifier. Read More


The anti-Stokes scattering and Stokes scattering in stimulated Brillouin scattering (SBS) cascade have been researched by the Vlasov-Maxwell simulation. In the high-intensity laser-plasmas interaction, the stimulated anti-Stokes Brillouin scattering (SABS) will occur after the second stage SBS rescattering. The mechanism of SABS has been put forward to explain this phenomenon. Read More


In this work, we study the outward propagation of temperature perturbations. For this purpose, we apply an advanced analysis technique, the Transfer Entropy, to ECE measurements performed in ECR heated discharges at the low-shear stellarator TJ-II. We observe that the propagation of these perturbations is not smooth, but is slowed down at specific radial positions, near 'trapping zones' characterized by long time lags with respect to the perturbation origin. Read More


We study the dynamics of seeded plasma blobs and depletions in an (effective) gravitational field. For incompressible flows the radial center of mass velocity of blobs and depletions is proportional to the square root of their initial cross-field size and amplitude. If the flows are compressible, this scaling holds only for ratios of amplitude to size larger than a critical value. Read More