Generalized Fisher Score for Feature Selection

Fisher score is one of the most widely used supervised feature selection methods. However, it selects each feature independently according to their scores under the Fisher criterion, which leads to a suboptimal subset of features. In this paper, we present a generalized Fisher score to jointly select features. It aims at finding an subset of features, which maximize the lower bound of traditional Fisher score. The resulting feature selection problem is a mixed integer programming, which can be reformulated as a quadratically constrained linear programming (QCLP). It is solved by cutting plane algorithm, in each iteration of which a multiple kernel learning problem is solved alternatively by multivariate ridge regression and projected gradient descent. Experiments on benchmark data sets indicate that the proposed method outperforms Fisher score as well as many other state-of-the-art feature selection methods.


Similar Publications

We propose an approximation method for thresholding of singular values using Chebyshev polynomial approximation (CPA). Many signal processing problems require iterative application of singular value decomposition (SVD) for minimizing the rank of a given data matrix with other cost functions and/or constraints, which is called matrix rank minimization. In matrix rank minimization, singular values of a matrix are shrunk by hard-thresholding, soft-thresholding, or weighted soft-thresholding. Read More


Here, we present a novel approach to solve the problem of reconstructing perceived stimuli from brain responses by combining probabilistic inference with deep learning. Our approach first inverts the linear transformation from latent features to brain responses with maximum a posteriori estimation and then inverts the nonlinear transformation from perceived stimuli to latent features with adversarial training of convolutional neural networks. We test our approach with a functional magnetic resonance imaging experiment and show that it can generate state-of-the-art reconstructions of perceived faces from brain activations. Read More


Implicit models, which allow for the generation of samples but not for point-wise evaluation of probabilities, are omnipresent in real world problems tackled by machine learning and a hot topic of current research. Some examples include data simulators that are widely used in engineering and scientific research, generative adversarial networks (GANs) for image synthesis, and hot-off-the-press approximate inference techniques relying on implicit distributions. The majority of existing approaches to learning implicit models rely on approximating the intractable distribution or optimisation objective for gradient-based optimisation, which is liable to produce inaccurate updates and thus poor models. Read More


Monoclonal antibodies constitute one of the most important strategies to treat patients suffering from cancers such as hematological malignancies and solid tumors. In order to guarantee the quality of those preparations prepared at hospital, quality control has to be developed. The aim of this study was to explore a noninvasive, nondestructive, and rapid analytical method to ensure the quality of the final preparation without causing any delay in the process. Read More


We propose an efficient method to estimate the accuracy of classifiers using only unlabeled data. We consider a setting with multiple classification problems where the target classes may be tied together through logical constraints. For example, a set of classes may be mutually exclusive, meaning that a data instance can belong to at most one of them. Read More


Recently, deep convolutional neural network (DCNN) achieved increasingly remarkable success and rapidly developed in the field of natural image recognition. Compared with the natural image, the scale of remote sensing image is larger and the scene and the object it represents are more macroscopic. This study inquires whether remote sensing scene and natural scene recognitions differ and raises the following questions: What are the key factors in remote sensing scene recognition? Is the DCNN recognition mechanism centered on object recognition still applicable to the scenarios of remote sensing scene understanding? We performed several experiments to explore the influence of the DCNN structure and the scale of remote sensing scene understanding from the perspective of scene complexity. Read More


We present a generic framework for trading off fidelity and cost in computing stochastic gradients when the costs of acquiring stochastic gradients of different quality are not known a priori. We consider a mini-batch oracle that distributes a limited query budget over a number of stochastic gradients and aggregates them to estimate the true gradient. Since the optimal mini-batch size depends on the unknown cost-fidelity function, we propose an algorithm, {\it EE-Grad}, that sequentially explores the performance of mini-batch oracles and exploits the accumulated knowledge to estimate the one achieving the best performance in terms of cost-efficiency. Read More


Autoregressive models are among the best performing neural density estimators. We describe an approach for increasing the flexibility of an autoregressive model, based on modelling the random numbers that the model uses internally when generating data. By constructing a stack of autoregressive models, each modelling the random numbers of the next model in the stack, we obtain a type of normalizing flow suitable for density estimation, which we call Masked Autoregressive Flow. Read More


This article considers algorithmic and statistical aspects of linear regression when the correspondence between the covariates and the responses is unknown. First, a fully polynomial-time approximation scheme is given for the natural least squares optimization problem in any constant dimension. Next, in an average-case and noise-free setting where the responses exactly correspond to a linear function of i. Read More


We present an algorithm based on posterior sampling (aka Thompson sampling) that achieves near-optimal worst-case regret bounds when the underlying Markov Decision Process (MDP) is communicating with a finite, though unknown, diameter. Our main result is a high probability regret upper bound of $\tilde{O}(D\sqrt{SAT})$ for any communicating MDP with $S$ states, $A$ actions and diameter $D$, when $T\ge S^5A$. Here, regret compares the total reward achieved by the algorithm to the total expected reward of an optimal infinite-horizon undiscounted average reward policy, in time horizon $T$. Read More