Simulation-based optimal Bayesian experimental design for nonlinear systems

The optimal selection of experimental conditions is essential to maximizing the value of data for inference and prediction, particularly in situations where experiments are time-consuming and expensive to conduct. We propose a general mathematical framework and an algorithmic approach for optimal experimental design with nonlinear simulation-based models; in particular, we focus on finding sets of experiments that provide the most information about targeted sets of parameters. Our framework employs a Bayesian statistical setting, which provides a foundation for inference from noisy, indirect, and incomplete data, and a natural mechanism for incorporating heterogeneous sources of information. An objective function is constructed from information theoretic measures, reflecting expected information gain from proposed combinations of experiments. Polynomial chaos approximations and a two-stage Monte Carlo sampling method are used to evaluate the expected information gain. Stochastic approximation algorithms are then used to make optimization feasible in computationally intensive and high-dimensional settings. These algorithms are demonstrated on model problems and on nonlinear parameter estimation problems arising in detailed combustion kinetics.

Comments: Preprint 53 pages, 17 figures (54 small figures). v1 submitted to the Journal of Computational Physics on August 4, 2011; v2 submitted on August 12, 2012. v2 changes: (a) addition of Appendix B and Figure 17 to address the bias in the expected utility estimator; (b) minor language edits; v3 submitted on November 30, 2012. v3 changes: minor edits

Similar Publications

Health care is one of the most exciting frontiers in data mining and machine learning. Successful adoption of electronic health records (EHRs) created an explosion in digital clinical data available for analysis, but progress in machine learning for healthcare research has been difficult to measure because of the absence of publicly available benchmark data sets. To address this problem, we propose four clinical prediction benchmarks using data derived from the publicly available Medical Information Mart for Intensive Care (MIMIC-III) database. Read More

We provide new results concerning noise-tolerant and sample-efficient learning algorithms under $s$-concave distributions over $\mathbb{R}^n$ for $-\frac{1}{2n+3}\le s\le 0$. The new class of $s$-concave distributions is a broad and natural generalization of log-concavity, and includes many important additional distributions, e.g. Read More

Recent work on end-to-end automatic speech recognition (ASR) has shown that the connectionist temporal classification (CTC) loss can be used to convert acoustics to phone or character sequences. Such systems are used with a dictionary and separately-trained Language Model (LM) to produce word sequences. However, they are not truly end-to-end in the sense of mapping acoustics directly to words without an intermediate phone representation. Read More

We present UBEV, a simple and efficient reinforcement learning algorithm for fixed-horizon episodic Markov decision processes. The main contribution is a proof that UBEV enjoys a sample-complexity bound that holds for all accuracy levels simultaneously with high probability, and matches the lower bound except for logarithmic terms and one factor of the horizon. A consequence of the fact that our sample-complexity bound holds for all accuracy levels is that the new algorithm achieves a sub-linear regret of O(sqrt(SAT)), which is the first time the dependence on the size of the state space has provably appeared inside the square root. Read More

This paper describes a method for clustering data that are spread out over large regions and which dimensions are on different scales of measurement. Such an algorithm was developed to implement a robotics application consisting in sorting and storing objects in an unsupervised way. The toy dataset used to validate such application consists of Lego bricks of different shapes and colors. Read More

We study the use of randomized value functions to guide deep exploration in reinforcement learning. This offers an elegant means for synthesizing statistically and computationally efficient exploration with common practical approaches to value function learning. We present several reinforcement learning algorithms that leverage randomized value functions and demonstrate their efficacy through computational studies. Read More

This work employs a Gaussian mixture model (GMM) to jointly analyse two traditional emission-line classification schemes of galaxy ionization sources: the Baldwin-Phillips-Terlevich (BPT) and W$_{H\alpha}$ vs. [NII]/H$\alpha$ (WHAN) diagrams, using spectroscopic data from the Sloan Digital Sky Survey Data Release 7 and SEAGal/STARLIGHT datasets. We apply a GMM to empirically define classes of galaxies in a three-dimensional space spanned by the log [OIII]/H\beta, log [NII]/H\alpha, and log EW(H{\alpha}) optical parameters. Read More

Kernel embeddings of distributions and the Maximum Mean Discrepancy (MMD), the resulting distance between distributions, are useful tools for fully nonparametric two-sample testing and learning on distributions. However, it is rarely that all possible differences between samples are of interest -- discovered differences can be due to different types of measurement noise, data collection artefacts or other irrelevant sources of variability. We propose distances between distributions which encode invariance to additive symmetric noise, aimed at testing whether the assumed true underlying processes differ. Read More

Multivariate binary distributions can be decomposed into products of univariate conditional distributions. Recently popular approaches have modeled these conditionals through neural networks with sophisticated weight-sharing structures. It is shown that state-of-the-art performance on several standard benchmark datasets can actually be achieved by training separate probability estimators for each dimension. Read More