Low-$T/|W|$ instabilities in differentially rotating proto-neutron stars with magnetic fields

Recent hydrodynamical simulations have shown that differentially rotating neutron stars formed in core-collapse supernovae may develop global non-axisymmetric instabilities even when $T/|W|$ (the ratio of the rotational kinetic energy $T$ to the gravitational potential energy $|W|$) is relatively small (less than 0.1). Such low-$T/|W|$ instability can give rise to efficient gravitational wave emission from the proto-neutron star. We investigate how this instability is affected by magnetic fields using a cylindrical stellar model. Wave absorption at the corotation resonance plays an important role in facilitating the hydrodynamic low-$T/|W|$ instability. In the presence of a toroidal magnetic field, the corotation resonance is split into two magnetic resonances where wave absorptions take place. We show that the toroidal magnetic field suppresses the low-$T/|W|$ instability when the total magnetic energy $W_{\rm B}$ is of order $0.2\,T$ or larger, corresponding to toroidal fields of a few $\times 10^{16}$ G or stronger. Although poloidal magnetic fields do not influence the instability directly, they can affect the instability by generating toroidal fields through linear winding of the initial poloidal field and magneto-rotational instability. We show that an initial poloidal field with strength as small as $10^{14}$ G may suppress the low-$T/|W|$ instability.

Comments: 12 pages, 6 figures; submitted to MNRAS

Similar Publications

Multiwavelength followup of unidentified Fermi sources has vastly expanded the number of known galactic-field "black widow" and "redback" millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. Read More

The Carina nebula hosts a large number of globulettes. The majority are of planetary mass, but there are also those with masses of several tens up to a few hundred Jupiter masses. We carried out radio observations of molecular line emission in 12CO and 13CO (2-1) and (3-2) of 12 larger objects in addition of positions in adjacent shell structures using APEX. Read More

We identify and investigate known ultracool stars and brown dwarfs that are being observed or indirectly constrained by the Gaia mission. These objects will be the core of the Gaia ultracool dwarf sample composed of all dwarfs later than M7 that Gaia will provide direct or indirect information on. We match known L and T dwarfs to the Gaia first data release, the Two Micron All Sky Survey and the Wide-field Infrared Survey Explorer AllWISE survey and examine the Gaia and infrared colours, along with proper motions, to improve spectral typing, identify outliers and find mismatches. Read More

The presence of dusty debris around main sequence stars denotes the existence of planetary systems. Such debris disks are often identified by the presence of excess continuum emission at infrared and (sub-)millimetre wavelengths, with measurements at longer wavelengths tracing larger and cooler dust grains. The exponent of the slope of the disk emission at sub-millimetre wavelengths, `q', defines the size distribution of dust grains in the disk. Read More

The cold-dense plasma is occasionally detected in the solar wind with in situ data, but the source of the cold-dense plasma remains illusive. Interchange reconnections (IRs) between closed fields and nearby open fields are well known to contribute to the formation of solar winds. We present a confined filament eruption associated with a puff-like coronal mass ejection (CME) on 2014 December 24. Read More

Debris discs are the dusty aftermath of planet formation processes around main-sequence stars. Analysis of these discs is often hampered by the absence of any meaningful constraint on the location and spatial extent of the disc around its host star. Multi-wavelength, resolved imaging ameliorates the degeneracies inherent in the modelling process, making such data indispensable in the interpretation of these systems. Read More

We present an outline of basic assumptions and governing structural equations describing atmospheres of substellar mass objects, in particular the extrasolar giant planets and brown dwarfs. Although most of the presentation of the physical and numerical background is generic, details of the implementation pertain mostly to the code CoolTlusty. We also present a review of numerical approaches and computer codes devised to solve the structural equations, and make a critical evaluation of their efficiency and accuracy. Read More

Type Ia supernovae are associated with thermonuclear explosions of white dwarf stars. Combustion processes convert material in nuclear reactions and release the energy required to explode the stars. At the same time, they produce the radioactive species that power radiation and give rise to the formation of the observables. Read More

Many protostellar gapped and binary discs show misalignments between their inner and outer discs; in some cases, $\sim70$ degree misalignments have been observed. Here we show that these misalignments can be generated through a "secular precession resonance" between the nodal precession of the inner disc and the precession of the gap-opening (stellar or massive planetary) companion. An evolving protostellar system may naturally cross this resonance during its lifetime due to disc dissipation and/or companion migration. Read More