# Local Multicoloring Algorithms: Computing a Nearly-Optimal TDMA Schedule in Constant Time

**Affiliations:**

^{1}CSAIL

The described multicoloring problem has direct applications in the context of wireless ad hoc and sensor networks. In order to coordinate the access to the shared wireless medium, the nodes of such a network need to employ some medium access control (MAC) protocol. Typical MAC protocols control the access to the shared channel by time (TDMA), frequency (FDMA), or code division multiple access (CDMA) schemes. Many channel access schemes assign a fixed set of time slots, frequencies, or (orthogonal) codes to the nodes of a network such that nodes that interfere with each other receive disjoint sets of time slots, frequencies, or code sets. Finding a valid assignment of time slots, frequencies, or codes hence directly corresponds to computing a multicoloring of a graph $G$. The scarcity of bandwidth, energy, and computing resources in ad hoc and sensor networks, as well as the often highly dynamic nature of these networks require that the multicoloring can be computed based on as little and as local information as possible.

## Similar Publications

A common task in phylogenetics is to find an evolutionary tree representing proximity relationships between species. This motivates the notion of leaf powers: a graph G = (V, E) is a leaf power if there exist a tree T on leafset V and a threshold k such that uv is an edge if and only if the distance between u and v in T is at most k. Characterizing leaf powers is a challenging open problem, along with determining the complexity of their recognition. Read More

We introduce and study the game of Selfish Cops and Adversarial Robber (SCAR) which is an N-player generalization of the classic two-player cops and robbers (CR) game. We prove that SCAR has a Nash equilibrium in deterministic strategies. Read More

These lecture notes are on automorphism groups of Cayley graphs and their applications to optimal fault-tolerance of some interconnection networks. We first give an introduction to automorphisms of graphs and an introduction to Cayley graphs. We then discuss automorphism groups of Cayley graphs. Read More

We define a special case of tree decompositions for planar graphs that respect a given embedding of the graph. We study the analogous width of the resulting decomposition we call the embedded-width of a plane graph. We show both upper bounds and lower bounds for the embedded-width of a graph in terms of its treewidth and describe a fixed parameter tractable algorithm to calculate the embedded-width of a plane graph. Read More

**Affiliations:**

^{1}IRIF,

^{2}I2M,

^{3}I2M

Abelian cellular automata (CA) are CA which are group endomorphisms of the full group shift when endowing the alphabet with an abelian group structure. A CA randomizes an initial probability measure if its iterated images weak *-converge towards the uniform Bernoulli measure (the Haar measure in this setting). We are interested in structural phenomena, i. Read More

Gottschalk and Vygen proved that every solution of the well-known subtour elimination linear program for traveling salesman paths is a convex combination of a set of more and more restrictive "generalized Gao trees" of the underlying graph. In this paper we give a short proof of this, as a {\em layered} convex combination of bases of a sequence of more and more restrictive matroids. Our proof implies (via the matroid partition theorem) a strongly-polynomial combinatorial algorithm for finding this convex combination. Read More

In a graph, a Clique-Stable Set separator (CS-separator) is a family $\mathcal{C}$ of cuts (bipartitions of the vertex set) such that for every clique $K$ and every stable set $S$ with $K \cap S = \emptyset$, there exists a cut $( W,W')$ in $\mathcal{C}$ such that $K \subseteq W$ and $S \subseteq W'$. Starting from a question concerning extended formulations of the Stable Set polytope and a related complexity communication problem, Yannakakis [17] asked in 1991 the following questions: does every graph admit a polynomial-size CS-separator? If not, does every perfect graph do? Several positive and negative results related to this question were given recently. Here we show how graph decomposition can be used to prove that a class of graphs admits a polynomial CS-separator. Read More

We consider the modeling approach introduced by R. Thomas for the qualitative study of gene regulatory networks. Tools and results on regulatory networks are often concerned only with the Boolean case of this formalism. Read More

We prove a Gauss-Bonnet formula X(G) = sum_x K(x), where K(x)=(-1)^dim(x) (1-X(S(x))) is a curvature of a vertex x with unit sphere S(x) in the Barycentric refinement G1 of a simplicial complex G. K(x) is dual to (-1)^dim(x) for which Gauss-Bonnet is the definition of Euler characteristic X. Because the connection Laplacian L'=1+A' of G is unimodular, where A' is the adjacency matrix of of the connection graph G', the Green function values g(x,y) = (1+A')^-1_xy are integers and 1-X(S(x))=g(x,x). Read More

In this work we investigate the problem of order batching and picker routing in storage areas. These are labour and capital intensive problems, often responsible for a substantial share of warehouse operating costs. In particular, we consider the case of online grocery shopping in which orders may be composed of dozens of items. Read More