Zhongqin Yang

Zhongqin Yang
Are you Zhongqin Yang?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Zhongqin Yang
Affiliation
Location

Pubs By Year

Pub Categories

 
Physics - Materials Science (4)
 
Physics - Mesoscopic Systems and Quantum Hall Effect (2)
 
Physics - Strongly Correlated Electrons (1)

Publications Authored By Zhongqin Yang

Electronic and topological properties of MoS2 monolayers endowed with 3d transition metal (TM) adatoms (V-Fe) are explored by using ab initio methods and k.p models. Without the consideration of the Hubbard U interaction, the V, Cr, and Fe adatoms tend to locate on the top of the Mo atoms, while the most stable site for the Mn atom is at the hollow position of the Mo-S hexagon. Read More

A novel topological insulator with tunable edge states, called quantum spin-quantum anomalous Hall (QSQAH) insulator, is predicted in a heterostructure of a hydrogenated Sb (SbH) monolayer on a LaFeO3 substrate by using ab initio methods. The substrate induces a drastic staggered exchange field in the SbH film, which plays an important role to generate the QSQAH effect. A topologically nontrivial band gap (up to 35 meV) is opened by Rashba spin-orbit coupling, which can be enlarged by strain and electric field. Read More

We report an investigation of temperature- and doping-dependent thermoelectric behaviors of topological semimetal Cd3As2. The electrical conductivity, thermal conductivity, Seebeck coefficient, and figure of merit (ZT) are calculated by using Boltzmann transport theory. The calculated thermoelectric properties of the pristine Cd3As2 match well the experimental results. Read More

The effects of tetragonal strain on electronic and magnetic properties of strontium-doped lanthanum manganite, La_{2/3}Sr_{1/3}MnO_3 (LSMO), are investigated by means of density-functional methods. As far as the structural properties are concerned, the comparison between theory and experiments for LSMO strained on the most commonly used substrates, shows an overall good agreement: the slight overestimate (at most of 1-1.5 %) for the equilibrium out-of-plane lattice constants points to possible defects in real samples. Read More

We report first-principles calculations of current-induced forces in Si atomic wires as a function of bias and wire length. We find that these forces are strongly nonlinear as a function of bias due to the competition between the force originating from the scattering states and the force due to bound states. We also find that the average force in the wire is larger the shorter the wire, suggesting that atomic wires are more difficult to break under current flow with increasing length. Read More