Zhenjun Song

Zhenjun Song
Are you Zhenjun Song?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Zhenjun Song
Affiliation
Location

Pubs By Year

Pub Categories

 
Physics - Chemical Physics (6)
 
Physics - Mesoscopic Systems and Quantum Hall Effect (1)

Publications Authored By Zhenjun Song

The remarkably strong chemical adsorption behaviors of nitric oxide on magnesia (001) film deposited on metal substrate have been investigated by employing periodic density functional calculations with Van der Waals corrections. The molybdenum supported magnesia (001) show significantly enhanced adsorption properties and the nitric oxide is chemisorbed strongly and preferably trapped in flat adsorption configuration on metal supported oxide film, due to the substantially large adsorption energies and transformation barriers. The analysis of Bader charges, projected density of states, differential charge densities, electron localization function, highest occupied orbital and particular orbital with largest Mg-NO-Mg bonding coefficients, are applied to reveal the electronic adsorption properties and characteristics of bonding between nitric oxide and surface as well as the bonding within the hybrid structure. Read More

The hydrogen peroxide dissociation on MgO(001) films deposited on Mo(001) surface is investigated by employing periodic density-functional theory methods. The pristine MgO(001) surface showing chemical inertness prefers the weak adsorbing molecular configuration and is extremely difficult to react with hydrogen peroxide. As far as we know, energetically favorable decomposition state of hydrogen peroxide has never been obtained on MgO(001) surface. Read More

The dehydrogenation reaction of methanol on metal supported MgO(100) films has been studied by employing periodic density functional calculations. As far as we know, the dehydrogenation of single methanol molecule over inert oxide insulators such as MgO has never been realized before without the introduction of defects and low coordinated atoms. By depositing the very thin oxide films on Mo substrate we have successfully obtained the dissociative state of methanol. Read More

The dissociation of a hydrogen molecule on MgO(001) films deposited on Mo(001) surface is investigated systematically using periodic density-functional theory method. The unusual adsorption behavior of heterolytic dissociative hydrogen molecule at neighboring surface oxygen and surface magnesium, is clarified here. To my knowledge, this heterolytic dissociative state has never been found before on bulk MgO(001) or metal supported MgO(001) surfaces. Read More

Controlling the dissociation of single water molecule on an insulating surface plays a crucial role in many catalytic reactions. In this Letter, we have identified the enhanced chemical reactivity of ultrathin MgO(100) films deposited on Mo(100) substrate that causes water dissociation. We reveal that the ability to split water on insulating surface closely depends on the lattice mismatch between ultrathin films and the underlying substrate, and substrate-induced in-plane tensile strain dramatically results in water dissociation on MgO(100). Read More

The formation of highly reactive oxygen species (ROS) on metal oxide surfaces have attracted considerable interest due to their diverse applications. In this work, we have performed densi-ty-functional theory calculations to investigate the co-adsorption of oxygen and water on ul-trathin MgO(100) films deposited on Mo(100) substrate. We reveal that the molecular oxygen can be stepwise decomposed completely with the assistance of water. Read More