Z. Y. Yu - Daya Bay Collaboration

Z. Y. Yu
Are you Z. Y. Yu?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Z. Y. Yu
Affiliation
Daya Bay Collaboration
Location

Pubs By Year

Pub Categories

 
Physics - Mesoscopic Systems and Quantum Hall Effect (9)
 
Physics - Materials Science (7)
 
High Energy Physics - Phenomenology (4)
 
High Energy Physics - Experiment (4)
 
Computer Science - Software Engineering (4)
 
Physics - Optics (3)
 
Mathematics - Optimization and Control (3)
 
Physics - Instrumentation and Detectors (3)
 
Computer Science - Artificial Intelligence (2)
 
Computer Science - Networking and Internet Architecture (2)
 
Nuclear Experiment (2)
 
Mathematics - Representation Theory (2)
 
Physics - Plasma Physics (2)
 
Mathematics - Information Theory (1)
 
Instrumentation and Methods for Astrophysics (1)
 
Statistics - Machine Learning (1)
 
Computer Science - Learning (1)
 
Computer Science - Information Theory (1)
 
Solar and Stellar Astrophysics (1)
 
Computer Science - Computational Geometry (1)
 
Computer Science - Graphics (1)
 
Earth and Planetary Astrophysics (1)
 
Physics - Chemical Physics (1)
 
Computer Science - Computation and Language (1)
 
Quantum Physics (1)
 
Computer Science - Databases (1)
 
Computer Science - Computer Vision and Pattern Recognition (1)
 
Computer Science - Human-Computer Interaction (1)
 
Physics - Physics Education (1)
 
Statistics - Theory (1)
 
Mathematics - Statistics (1)
 
Physics - Biological Physics (1)
 
High Energy Astrophysical Phenomena (1)

Publications Authored By Z. Y. Yu

We investigate the sensitivity to weakly interacting scalar dark matter from future determination of electroweak oblique parameters in the Circular Electron-Positron Collider (CEPC) project. As illuminating examples, three dark matter models with scalar electroweak multiplets are studied. The multiplet couplings to the standard model Higgs doublet can break the mass degeneracy among the components, leading to nonzero contributions to oblique parameters. Read More

Most problems in search-based software engineering involve balancing conflicting objectives. Prior approaches to this task have required a large number of evaluations- making them very slow to execute and very hard to comprehend. To solve these problems, this paper introduces FLASH, a decision tree based optimizer that incrementally grows one decision tree per objective. Read More

Given the growing number of new publications appearing everyday, literature reviews are important for software engineering researches to stay up-to-date with their field. A state-of-the-art text mining method (FASTREAD) supports SE researchers in selecting literature of their interests (this approach uses an active learner to suggest what small number of papers, out of many thousands of candidates, might be worth reading). While FASTREAD allows researchers to skim 90% fewer papers in fresh new literature reviews, we find two common scenarios where knowledge from old literature reviews can further enhance new one: i. Read More

Wavelength determines the length scale of the cross section when electromagnetic waves are scattered by an electrically small object. The cross section diverges for resonant scattering, and diminishes for non-resonant scattering, when wavelength approaches infinity. This scattering law explains the color of the sky as well as the strength of a mobile phone signal. Read More

Data quality of Phasor Measurement Unit (PMU) is receiving increasing attention as it has been identified as one of the limiting factors that affect many wide-area measurement system (WAMS) based applications. In general, existing PMU calibration methods include offline testing and model based approaches. However, in practice, the effectiveness of both is limited due to the very strong assumptions employed. Read More

Nonsymmorphic symmetries, which involve fractional lattice translations in crystalline materials, can generate exotic types of fermionic excitations that are robust against spin-orbit coupling. Here we report on a hourglass-type dispersion in the bulk of three-dimensional rhenium dioxide crystals, as dictated by its nonsymmorphic symmetries. Due to time reversal and inversion symmetries, each band has an additional two-fold degeneracy, making the neck crossing-point of the hourglass four-fold degenerate. Read More

Nodal loop appears when two bands, typically one electron-like and one hole-like, are crossing each other linearly along a one-dimensional manifold in the reciprocal space. Here we propose a new type of nodal loop which emerges from crossing between two bands which are both electron-like (or hole-like) along certain direction. Close to any point on such loop (dubbed as a type-II nodal loop), the linear spectrum is strongly tilted and tipped over along one transverse direction, leading to marked differences in magnetic, optical, and transport responses compared with the conventional (type-I) nodal loops. Read More

In this paper, we determine the cocycle deformations and Galois objects for semisimple Hopf algebras of dimension pqr, and decide the categorically Morita equivalent classes and monoidally Morita equivalent classes of them. We show that all of them only have one trivial Galois objects, therefore these Hopf algebras are pairwise twist inequivalent, equivalently they are not monoidally Morita equivalent to each other, moreover, all the categorically Morita equivalent classes are determined. Read More

This paper addresses deep face recognition (FR) problem under open-set protocol, where ideal face features are expected to have smaller maximal intra-class distance than minimal inter-class distance under a suitably chosen metric space. However, few existing algorithms can effectively achieve this criterion. To this end, we propose the angular softmax (A-Softmax) loss that enables convolutional neural networks (CNNs) to learn angularly discriminative features. Read More

In this paper, we determine the cocycle deformations and Galois objects for non-commutative and non-cocommutative Hopf algebras of dimension $16$. We show that these Hopf algebras are pairwise twist inequivalent by calculating the higher Frobenius-Schur indicators, and that except three Hopf algebras which are cocycle deformations of dual group algebras, none of these Hopf algebras admit non-trivial cocycle deformations, though all of them have more than one Galois objects. Read More

The Efimov effect was first predicted for three particles interacting at an $s$-wave resonance in three dimensions. Subsequent study showed that the same effect can be realized by considering two-body and three-body interactions in mixed dimensions. In this work, we consider the three-body problem of two bosonic $A$ atoms interacting with another single $B$ atom in mixed dimensions: The $A$ atoms are confined in a space of dimension $d_A$ and the $B$ atom in a space of dimension $d_B$, and there is an interspecies $s$-wave interaction in a $d_{\rm int}$-co-dimensional space accessible to both species. Read More

Topological metals with protected band-crossing points have been attracting great interest. Here we report novel topological band features in a family of metal diboride materials. Using first- principles calculations, we show that these materials are metallic, and close to Fermi level, there appears coexistence of one pair of nodal rings and one pair of triply-degenerate nodal points (TNPs). Read More

2017Apr
Authors: F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, D. Cao, G. F. Cao, J. Cao, Y. L. Chan, J. F. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. Cheng, Z. K. Cheng, J. J. Cherwinka, M. C. Chu, A. Chukanov, J. P. Cummings, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, L. Guo, X. H. Guo, Y. H. Guo, Z. Guo, R. W. Hackenburg, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. B. Hsiung, B. Z. Hu, T. Hu, E. C. Huang, H. X. Huang, X. T. Huang, Y. B. Huang, P. Huber, W. Huo, G. Hussain, D. E. Jaffe, K. L. Jen, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, D. Jones, L. Kang, S. H. Kettell, A. Khan, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, X. Q. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, J. L. Liu, J. C. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, X. Y. Ma, X. B. Ma, Y. Q. Ma, Y. Malyshkin, D. A. Martinez Caicedo, K. T. McDonald, R. D. McKeown, I. Mitchell, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, J. P. Ochoa-Ricoux, A. Olshevskiy, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, R. M. Qiu, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, H. Steiner, P. Stoler, J. L. Sun, W. Tang, D. Taychenachev, K. Treskov, K. V. Tsang, C. E. Tull, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, W. J. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. L. Xu, Y. Xu, T. Xue, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, Y. Z. Yang, M. Ye, Z. Ye, M. Yeh, B. L. Young, Z. Y. Yu, S. Zeng, L. Zhan, C. Zhang, C. C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, R. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, L. Zhou, H. L. Zhuang, J. H. Zou

The Daya Bay experiment has observed correlations between reactor core fuel evolution and changes in the reactor antineutrino flux and energy spectrum. Four antineutrino detectors in two experimental halls were used to identify 2.2 million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles for each of six 2. Read More

Snapshot Isolation (SI) is a widely adopted concurrency control mechanism in database systems, which utilizes timestamps to resolve conflicts between transactions. However, centralized allocation of timestamps is a potential bottleneck for parallel transaction management. This bottleneck is becoming increasingly visible with the rapidly growing degree of parallelism of today's computing platforms. Read More

We investigate the collective excitations of a Raman-induced spin-orbit coupled Bose-Einstein condensate confined in a quasi one-dimension harmonic trap using the Bogoliubov method. By tuning the Raman coupling strength, three phases of the system can be identified. By calculating the transition strength, we are able to classify various excitation modes that are experimentally relevant. Read More

We reveal a class of three-dimensional $d$-orbital topological materials in the antifluorite Cu$_2$S family. Derived from the unique properties of low-energy $t_{2g}$ states, their phases are solely determined by the sign of spin-orbit coupling (SOC): topological insulator for negative SOC, whereas topological semimetal for positive SOC; both having Dirac-cone surface states but with contrasting helicities. With broken inversion symmetry, the semimetal becomes one with a nodal box consisting of butterfly-shaped nodal lines that are robust against SOC. Read More

A smartphone fluorimeter capable of time-based fluorescence intensity measurements at various temperatures is reported. Excitation is provided by an integrated UV LED (370 nm) and detection obtained using the in-built CMOS camera. A Peltier is integrated to allow measurements of the intensity over T = 10 to 40 C with a maximum temperature resolution of DELTA T ~ 0. Read More

Among the many different kinds of program repair techniques, one widely studied family of techniques is called test suite based repair. Test-suites are in essence input-output specifications and are therefore typically inadequate for completely specifying the expected behavior of the program under repair. Consequently, the patches generated by test suite based program repair techniques pass the test suite, yet may be incorrect. Read More

Task-oriented dialog systems have been applied in various tasks, such as automated personal assistants, customer service providers and tutors. These systems work well when users have clear and explicit intentions that are well-aligned to the systems' capabilities. However, they fail if users intentions are not explicit. Read More

In this work, we discuss the Landau's criterion for anisotropic superfluidity. To this end, we consider a point-like impurity moving in a uniform Bose-Einstein condensate with either interparticle dipole-dipole interaction or Raman induced spin-orbit coupling. In both cases, we find that the Landau critical velocity $v_{\rm c}$ is generally smaller than the sound velocity in the moving direction. Read More

We introduce the concept of saturated absorption competition (SAC) microscopy as a means of providing sub-diffraction spatial resolution in fluorescence imaging. Unlike the post-competition process between stimulated and spontaneous emission that is used in stimulated emission depletion (STED) microscopy, SAC microscopy breaks the diffraction limit by emphasizing a pre-competition process that occurs in the fluorescence absorption stage in a manner that shares similarities with ground-state depletion (GSD) microscopy. Moreover, unlike both STED and GSD microscopy, SAC microscopy offers a reduction in complexity and cost by utilizing only a single continuous-wave laser diode and an illumination intensity that is ~ 20x smaller than that used in STED. Read More

Prompted by recent reports on $\sqrt{3} \times \sqrt{3}$ graphene superlattices with intrinsic inter-valley interactions, we perform first-principles calculations to investigate the electronic properties of periodically nitrogen-doped graphene and carbon nanotube nanostructures. In these structures, nitrogen atoms substitute one-sixth of the carbon atoms in the pristine hexagonal lattices with exact periodicity to form perfect $\sqrt{3} \times \sqrt{3}$ superlattices of graphene and carbon nanotubes. Multiple nanostructures of $\sqrt{3} \times \sqrt{3}$ graphene ribbons and carbon nanotubes are explored, and all configurations show nonmagnetic and metallic behaviors. Read More

An optimal control problem is considered for linear stochastic differential equations with quadratic cost functional. The coefficients of the state equation and the weights in the cost functional are bounded operators on the spaces of square integrable random variables. The main motivation of our study is linear quadratic optimal control problems for mean-field stochastic differential equations. Read More

Transition-metal dichalcogenides (TMDCs) are important class of two-dimensional (2D) layered materials for electronic and optoelectronic applications, due to their ultimate body thickness, sizable and tunable bandgap, and decent theoretical room-temperature mobility of hundreds to thousands cm2/Vs. So far, however, all TMDCs show much lower mobility experimentally because of the collective effects by foreign impurities, which has become one of the most important limitations for their device applications. Here, taking MoS2 as an example, we review the key factors that bring down the mobility in TMDC transistors, including phonons, charged impurities, defects, and charge traps. Read More

We propose, for the first time, a valley Seebeck effect in gate tunable zigzag graphene nanoribbons as a result of the interplay between thermal gradient and valleytronics. A pure valley current is further generated by the thermal gradient as well as the external bias. In a broad temperature range, the pure valley current is found to be linearly dependent on the temperature gradient while it increases with the increasing temperature of one lead for a fixed thermal gradient. Read More

We numerically investigate the electronic transport properties of graphene nanoribbons and carbon nanotubes with inter-valley coupling, e.g., in \sqrt{3}N \times \sqrt{3}N and 3N \times 3N superlattices. Read More

The deluge of networked data motivates the development of algorithms for computation- and communication-efficient information processing. In this context, three data-adaptive censoring strategies are introduced to considerably reduce the computation and communication overhead of decentralized recursive least-squares (D-RLS) solvers. The first relies on alternating minimization and the stochastic Newton iteration to minimize a network-wide cost, which discards observations with small innovations. Read More

In this paper, we consider minimax optimal estimation of semiparametric models in high dimensional setting. Our particular focus is on partially linear additive models with high dimensional sparse vectors and smooth nonparametric functions. The minimax rate for Euclidean components is the typical sparse estimation rate, independent of nonparametric smoothness. Read More

Recently the AMS-02 collaboration has published the measurement of the cosmic antiproton to proton ratio $\bar{p}/p$ and the $\bar{p}$ flux with a high precision up to $\sim 450\,\mathrm{GeV}$. In this work, we perform a systematic analysis of the secondary antiproton flux generated by the cosmic ray interaction with the interstellar gas. The uncertainty of the prediction originates from the cosmic ray propagation process and the hadronic interaction models. Read More

GAIA leads us to step into a new era with a high astrometry precision of 10 uas. Under such a precision, astrometry will play important roles in detecting and characterizing exoplanets. Specially, we can identify planet pairs in mean motion resonances(MMRs) via astrometry, which constrains the formation and evolution of planetary systems. Read More

Systematic literature reviews (SLRs) are the primary method for aggregating and synthesizing evidence in evidence-based software engineering (SE). Primary study selection is a critical and time-consuming SLR step in which reviewers use titles, abstracts, or even full texts to evaluate thousands of studies to find the dozens of them that are relevant to the research questions. We seek to reduce the effort of primary study selection in SE SLRs by exploring and refactoring the state-of-the-art human-in-the-loop incremental learning techniques from evidence-based medicine and legal electronic discovery. Read More

We investigate the full-counting statistics (FCS) of energy transport carried by electrons in molecular junctions for the Anderson-Holstein model in the polaronic regime. Using two-time quantum measurement scheme, generating function (GF) for the energy transport is derived and expressed as a Fredholm determinant in terms of Keldysh nonequilibrium Green's function in the time domain. Dressed tunneling approximation is used in decoupling the phonon cloud operator in the polaronic regime. Read More

Cross-entropy loss together with softmax is arguably one of the most common used supervision components in convolutional neural networks (CNNs). Despite its simplicity, popularity and excellent performance, the component does not explicitly encourage discriminative learning of features. In this paper, we propose a generalized large-margin softmax (L-Softmax) loss which explicitly encourages intra-class compactness and inter-class separability between learned features. Read More

Development of additive manufacturing in last decade greatly improves tissue engineering. During the manufacturing of porous scaffold, simplified but functionally equivalent models are getting focused for practically reasons. Scaffolds can be classified into regular porous scaffolds and irregular porous scaffolds. Read More

A new class of universal "three-body" bound states has been recently predicted theoretically for identical fermions interacting at p-wave resonance in two dimensions. This phenomenon is called the super Efimov effect since the binding energies of the states follow a intriguing double exponential scaling. However, experimental resolution of this scaling is expected to meet formidable challenges. Read More

Future electroweak precision measurements in the Circular Electron Positron Collider (CEPC) project would significantly improve the precision of electroweak oblique parameters. We evaluate the expected precision through global fits, and study the corresponding sensitivity to weakly interacting fermionic dark matter. Three models with electroweak multiplets in the dark sector are investigated as illuminating examples. Read More

Solar flares are the most powerful explosions occurring in the solar system, which may lead to disastrous space weather events and impact various aspects of our Earth. So far, it is still a big challenge in modern astrophysics to understand the origin of solar flares and predict their onset. Based on the analysis of soft X-ray emission observed by the Geostationary Operational Environmental Satellite (GOES), this work reported a new discovery of very long-periodic pulsations occurred in the preflare phase before the onset of solar flares (preflare-VLPs). Read More

A manifestly covariant, or geometric, field theory for relativistic classical particle-field system is developed. The connection between space-time symmetry and energy-momentum conservation laws for the system is established geometrically without splitting the space and time coordinates, i.e. Read More

With the dense deployment of the remote radio heads (RRHs), the huge network power consumption has become a great challenge for green cloud radio access networks (Cloud-RANs), and multiuser downlink beamforming has been proposed as a promising solution. Moreover, the increasing number of mobile users (MUs) causes that admission control is essential for Cloud-RAN with limited fronthaul capacity and predefined power budget. In this paper, we consider the problem of joint multiuser downlink beamforming and admission control (JBAC) to enhance the admitted MUs in the network and reduce the network power consumption, while taking into account the Quality of Service requirements of the MUs, the power budget constraints and fronthaul limitation. Read More

2016Oct
Authors: Daya Bay Collaboration, F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, D. Cao, G. F. Cao, J. Cao, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. -H. Cheng, J. Cheng, Y. P. Cheng, Z. K. Cheng, J. J. Cherwinka, M. C. Chu, A. Chukanov, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, M. Y. Guan, L. Guo, X. H. Guo, Z. Guo, R. W. Hackenburg, R. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, X. T. Huang, P. Huber, W. Huo, G. Hussain, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, D. Jones, J. Joshi, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. L. Liu, J. C. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, Z. Lv, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, Y. Malyshkin, D. A. Martinez Caicedo, K. T. McDonald, R. D. McKeown, I. Mitchell, M. Mooney, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevskiy, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, H. Steiner, G. X. Sun, J. L. Sun, W. Tang, D. Taychenachev, K. Treskov, K. V. Tsang, C. E. Tull, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, W. J. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, Y. Xu, T. Xue, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, Z. Ye, M. Yeh, B. L. Young, Z. Y. Yu, S. Zeng, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

A measurement of electron antineutrino oscillation by the Daya Bay Reactor Neutrino Experiment is described in detail. Six 2.9-GW$_{\rm th}$ nuclear power reactors of the Daya Bay and Ling Ao nuclear power facilities served as intense sources of $\overline{\nu}_{e}$'s. Read More

Polarization beam splitters, devices that separate the two orthogonal polarizations of light into different propagation directions, are one of the most ubiquitous optical elements. However, traditionally polarization splitters rely on bulky optical materials, while emerging optoelectronic and photonic circuits require compact, chip-scale polarization splitters. Here we show that a subwavelength rectangular lattice of cylindrical silicon Mie resonators functions as a polarization splitter, efficiently reflecting one polarization while transmitting the other. Read More

Mass measurement of a particle whose decay products including invisible particles is a challenging task at colliders. For a new physics model involving a dark matter candidate $N$ and a $Z_2$ symmetry that stabilizes it, a typical new process $e^+e^-$ colliders is pair production $e^+e^- \to Y\bar{Y}$ followed by decay processes $Y\to aN$ and $\bar{Y}\to b\bar{N}$, where $a$ and $b$ are visible but $N$ is invisible. In this work, we propose a new method to measure the physical masses in this topology by making use of the kinematic equations given by momentum-energy conservation and on-shell conditions. Read More

We propose a realization of pure spin currents and perfect valley filter based on a quantum anomalous Hall insulator, around which edge states with up-spin and down-spin circulate. By applying staggered sublattice potential on the strips along the edges of sample, the edge states with down spin can be pushed into the inner boundaries of the strips while the other edge states with up spin remain on the outer boundaries, resulting in spatially separated chiral states with perfect spin polarization. Moreover, a valley filter, which is immune to short-range and smooth long-range scatterers, can be engineered by additionally applying boundary potentials on the outmost lattices of the sample. Read More

We report a first-principles study on the tunnel magnetoresistance (TMR) and spin-injection efficiency (SIE) through phosphorene with nickel electrodes under the mechanical tension and bending on the phosphorene region. Both the TMR and SIE are largely improved under these mechanical deformations. For the uniaxial tension ($\varepsilon_y$) varying from 0 to 15\% applied along the armchair transport ({\it y}-)direction of the phosphorene, the TMR ratio is enhanced with a maximum of 107\% at the $\varepsilon_y=10\%$, while the SIE increases monotonously from 8\% up to 43\% with the increasing of the strain. Read More

The problem of stochastic deadline scheduling is considered. A constrained Markov decision process model is introduced in which jobs arrive randomly at a service center with stochastic job sizes, rewards, and completion deadlines.The service provider faces random processing costs, convex non-completion penalties, and a capacity constraint that limits the simultaneous processing of jobs. Read More

In cloud computing paradigm, virtual resource autoscaling approaches have been intensively studied recent years. Those approaches dynamically scale in/out virtual resources to adjust system performance for saving operation cost. However, designing the autoscaling algorithm for desired performance with limited budget, while considering the existing capacity of legacy network equipment, is not a trivial task. Read More

The Accurate Particle Tracer (APT) code is designed for large-scale particle simulations on dynamical systems. Based on a large variety of advanced geometric algorithms, APT possesses long-term numerical accuracy and stability, which are critical for solving multi-scale and non-linear problems. Under the well-designed integrated and modularized framework, APT serves as a universal platform for researchers from different fields, such as plasma physics, accelerator physics, space science, fusion energy research, computational mathematics, software engineering, and high-performance computation. Read More

Benefited from the advantages on environmental benign, easy purification, and high thermal stability, the recently synthesized two-dimensional (2D) material MoN2 shows great potential for clean and renewable energy applications. Here, through first-principles calculations, we show that the monolayered MoN2 is promising to be a high capacity electrode material for metal ion batteries. Firstly, identified by phonon dispersion and exfoliation energy calculations, MoN2 monolayer is proved to be structurally stable and could be exfoliated from its bulk counterpart in experiments. Read More

Effective gravity and gauge fields are emergent properties intrinsic for low-energy quasiparticles in topological semimetals. Here, taking two Dirac semimetals as examples, we demonstrate that applied lattice strain can generate warped spacetime, with fascinating analogues in astrophysics. Particularly, we study the possibility of simulating black-hole/white-hole event horizons and gravitational lensing effect. Read More

Super Efimov effect is a recently proposed three-body effect characterized by a double-exponential scaling, which has not been observed experimentally yet. Here, we present the general dynamic equations determining the cloud size of a scale invariant quantum gas in a time dependent harmonic trap. We show that a double-log periodicity as the hallmark of the super Efimov effect emerges when the trap frequency is decreased with a specially designed time-dependence. Read More