Yijin Mao

Yijin Mao
Are you Yijin Mao?

Claim your profile, edit publications, add additional information:

Contact Details

Yijin Mao

Pubs By Year

Pub Categories

Physics - Computational Physics (4)
Physics - Fluid Dynamics (3)
Physics - Materials Science (2)
Physics - Soft Condensed Matter (1)

Publications Authored By Yijin Mao

Effects of nanostructured defects of copper solid surface on the bubble growth in liquid argon have been investigated through a hybrid atomistic-continuum method. The same solid surfaces with five different nanostructures, namely, wedge defect, deep rectangular defect (R-I), shallow rectangular defect (R-II), small rectangular defect (R-III) and no defect, have been modeled at molecular level. The liquid argon is placed on top of the hot solid copper with superheat of 30 K after equilibration is achieved with CFD-MD coupled simulation. Read More

Choice of appropriate force field is one of the main concerns of any atomistic simulation that needs to be seriously considered in order to yield reliable results. Since, investigations on mechanical behavior of materials at micro/nanoscale has been becoming much more widespread, it is necessary to determine an adequate potential which accurately models the interaction of the atoms for desired applications. In this framework, reliability of multiple embedded atom method based interatomic potentials for predicting the elastic properties was investigated. Read More

A three-dimensional numerical simulation is conducted for a complex process in a laser-material system, which involves heat and mass transfer in a compressible gaseous phase and chemical reaction during laser irradiation on a urethane paint coated on a stainless steel substrate. A finite volume method (FVM) with a co-located grid mesh that discretizes the entire computational domain is employed to simulate the heating process. The results show that when the top surface of the paint reaches a threshold temperature of 560 K, the polyurethane starts to decompose through chemical reaction. Read More

Granular packing structures of cohesive micro-sized particles with different sizes and size distributions, including mono-sized, uniform and Gaussian distribution, are investigated by using two different history dependent contact models with Discrete Element Method (DEM). The simulation is carried out in the framework of LIGGGHTS which is a DEM simulation package extended based on branch of granular package of widely used open-source code LAMMPS. Contact force caused by translation and rotation, frictional and damping forces due to collision with other particles or container boundaries, cohesive force, van der Waals force, and gravity are considered. Read More

A thermal model of chemical vapor deposition of titanium nitride (TiN) on the spherical particle surface under irradiation by a nanosecond laser pulse is presented in this paper. Heat and mass transfer on a single spherical metal powder particle surface subjected to temporal Gaussian heat flux is investigated analytically. The chemical reaction on the particle surface and the mass transfer in the gas phase are also considered. Read More

Self-assembly of sub-micron particles suspended in a water film is investigated numerically. The liquid medium is allowed to evaporate leaving only the sub-micron particles. A coupled CFD-DEM approach is used for the simulation of fluid-particle interaction. Read More

A simulation work aiming to study heat transfer coefficient between argon fluid flow and copper plate is carried out based on atomistic-continuum hybrid method. Navier-Stokes equations for continuum domain are solved through the Pressure Implicit with Splitting of Operators (PISO) algorithm, and the atom evolution in molecular domain is solved through the Verlet algorithm. The solver is validated by solving Couette flow and heat conduction problems. Read More