Yehezkel S. Resheff

Yehezkel S. Resheff
Are you Yehezkel S. Resheff?

Claim your profile, edit publications, add additional information:

Contact Details

Yehezkel S. Resheff

Pubs By Year

Pub Categories

Statistics - Machine Learning (3)
Computer Science - Learning (2)
Statistics - Applications (2)
Statistics - Methodology (1)
Statistics - Computation (1)
Computer Science - Computer Vision and Pattern Recognition (1)
Computer Science - Databases (1)

Publications Authored By Yehezkel S. Resheff

Deep learning has become the method of choice in many application domains of machine learning in recent years, especially for multi-class classification tasks. The most common loss function used in this context is the cross-entropy loss, which reduces to the log loss in the typical case when there is a single correct response label. While this loss is insensitive to the identity of the assigned class in the case of misclassification, in practice it is often the case that some errors may be more detrimental than others. Read More

Parkinson's disease is a neuro-degenerative disorder affecting tens of millions of people worldwide. Lately, there has been considerable interest in systems for at-home monitoring of patients, using wearable devices which contain inertial measurement units. We present a new wavelet-based approach for analysis of data from single wrist-worn smart-watches, and show high detection performance for tremor, bradykinesia, and dyskinesia, which have been the major targets for monitoring in this context. Read More

Trajectory segmentation is the process of subdividing a trajectory into parts either by grouping points similar with respect to some measure of interest, or by minimizing a global objective function. Here we present a novel online algorithm for segmentation and summary, based on point density along the trajectory, and based on the nature of the naturally occurring structure of intermittent bouts of locomotive and local activity. We show an application to visualization of trajectory datasets, and discuss the use of the summary as an index allowing efficient queries which are otherwise impossible or computationally expensive, over very large datasets. Read More

Often in real-world datasets, especially in high dimensional data, some feature values are missing. Since most data analysis and statistical methods do not handle gracefully missing values, the first step in the analysis requires the imputation of missing values. Indeed, there has been a long standing interest in methods for the imputation of missing values as a pre-processing step. Read More

The field of Movement Ecology, like so many other fields, is experiencing a period of rapid growth in availability of data. As the volume rises, traditional methods are giving way to machine learning and data science, which are playing an increasingly large part it turning this data into science-driving insights. One rich and interesting source is the bio-logger. Read More