Ye Tian - University of South Carolina

Ye Tian
Are you Ye Tian?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Ye Tian
Affiliation
University of South Carolina
City
Columbia
Country
United States

Pubs By Year

External Links

Pub Categories

 
Nuclear Experiment (18)
 
Mathematics - Number Theory (7)
 
High Energy Physics - Experiment (6)
 
Mathematics - Information Theory (5)
 
Computer Science - Information Theory (5)
 
High Energy Physics - Phenomenology (3)
 
Physics - Superconductivity (3)
 
Statistics - Applications (2)
 
Quantum Physics (2)
 
General Relativity and Quantum Cosmology (1)
 
Quantitative Biology - Molecular Networks (1)
 
Cosmology and Nongalactic Astrophysics (1)
 
Mathematics - Representation Theory (1)
 
Physics - Instrumentation and Detectors (1)
 
Computer Science - Neural and Evolutionary Computing (1)
 
Statistics - Methodology (1)
 
Physics - General Physics (1)
 
Quantitative Biology - Quantitative Methods (1)
 
Quantitative Biology - Genomics (1)
 
High Energy Physics - Theory (1)

Publications Authored By Ye Tian

2017May
Authors: D. Ho, P. Peng, C. Bass, P. Collins, A. D'Angelo, A. Deur, J. Fleming, C. Hanretty, T. Kageya, M. Khandaker, F. J. Klein, E. Klempt, V. Laine, M. M. Lowry, H. Lu, C. Nepali, V. A. Nikonov, T. O'Connell, A. M. Sandorfi, A. V. Sarantsev, R. A. Schumacher, I. I. Strakovsky, A. Švarc, N. K. Walford, X. Wei, C. S. Whisnant, R. L. Workman, I. Zonta, K. P. Adhikari, D. Adikaram, Z. Akbar, M. J. Amaryan, S. Anefalos Pereira, H. Avakian, J. Ball, M. Bashkanov, M. Battaglieri, V. Batourine, I. Bedlinskiy, W. J. Briscoe, V. D. Burkert, D. S. Carman, A. Celentano, G. Charles, T. Chetry, G. Ciullo, L. Clark, L. Colaneri, P. L. Cole, M. Contalbrigo, V. Crede, N. Dashyan, E. De Sanctis, R. De Vita, C. Djalali, R. Dupre, A. El Alaoui, L. El Fassi, L. Elouadrhiri, G. Fedotov, S. Fegan, R. Fersch, A. Filippi, A. Fradi, Y. Ghandilyan, G. P. Gilfoyle, F. X. Girod, D. I. Glazier, C. Gleason, W. Gohn, E. Golovatch, R. W. Gothe, K. A. Griffioen, M. Guidal, L. Guo, H. Hakobyan, N. Harrison, K. Hicks, M. Holtrop, S. M. Hughes, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, D. Jenkins, H. Jiang, H. S. Jo, K. Joo, S. Joosten, D. Keller, G. Khachatryan, A. Kim, W. Kim, A. Klein, V. Kubarovsky, S. V. Kuleshov, L. Lanza, P. Lenisa, K. Livingston, I . J . D. MacGregor, N. Markov, B. McKinnon, T. Mineeva, V. Mokeev, R. A. Montgomery, A Movsisyan, C. Munoz Camacho, G. Murdoch, S. Niccolai, G. Niculescu, M. Osipenko, M. Paolone, R. Paremuzyan, K. Park, E. Pasyuk, W. Phelps, O. Pogorelko, J. W. Price, S. Procureur, D. Protopopescu, M. Ripani, D. Riser, B. G. Ritchie, A. Rizzo, G. Rosner, F. Sabatié, C. Salgado, Y. G. Sharabian, Iu. Skorodumina, G. D. Smith, D. I. Sober, D. Sokhan, N. Sparveris, S. Strauch, Ye Tian, B. Torayev, M. Ungaro, H. Voskanyan, D. P. Watts, M. H. Wood, N. Zachariou, J. Zhang, Z. W. Zhao

We report the first beam-target double-polarization asymmetries in the $\gamma + n(p) \rightarrow \pi^- + p(p)$ reaction spanning the nucleon resonance region from invariant mass $W$= $1500$ to $2300$ MeV. Circularly polarized photons and longitudinally polarized deuterons in $H\!D$ have been used with the CLAS detector at Jefferson Lab. The exclusive final state has been extracted using three very different analyses that show excellent agreement, and these have been used to deduce the {\it{E}} polarization observable for an effective neutron target. Read More

2017Mar
Authors: CLAS Collaboration, I. Bedlinskiy, V. Kubarovsky, P. Stoler, K. P. Adhikari, Z. Akbar, S. Anefalos Pereira, H. Avakian, J. Ball, N. A. Baltzell, M. Battaglieri, V. Batourine, A. S. Biselli, S. Boiarinov, W. J. Briscoe, V. D. Burkert, T. Cao, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, G. Ciullo, L. Clark, L. Colaneri, P. L. Cole, M. Contalbrigo, V. Crede, A. D'Angelo, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, R. Dupre, A. El Alaoui, L. El Fassi, L. Elouadrhiri, P. Eugenio, E. Fanchini, G. Fedotov, R. Fersch, A. Filippi, J. A. Fleming, T. A. Forest, M. Garçon, N. Gevorgyan, Y. Ghandilyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, C. Gleason, E. Golovatch, R. W. Gothe, K. A. Griffioen, M. Guidal, L. Guo, K. Hafidi, H. Hakobyan, C. Hanretty, N. Harrison, M. Hattawy, K. Hicks, S. M. Hughes, C. E. Hyde, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, D. Jenkins, H. Jiang, H. S. Jo, K. Joo, S. Joosten, D. Keller, G. Khachatryan, M. Khachatryan, M. Khandaker, A. Kim, W. Kim, F. J. Klein, S. E. Kuhn, S. V. Kuleshov, L. Lanza, P. Lenisa, K. Livingston, I. J. D. MacGregor, N. Markov, B. McKinnon, Z. E. Meziani, M. Mirazita, V. Mokeev, R. A. Montgomery, A. Movsisyan, C. Munoz Camacho, P. Nadel-Turonski, L. A. Net, A. Ni, S. Niccolai, G. Niculescu, M. Osipenko, A. I. Ostrovidov, M. Paolone, R. Paremuzyan, K. Park, E. Pasyuk, P. Peng, W. Phelps, S. Pisano, O. Pogorelko, J. W. Price, Y. Prok, D. Protopopescu, A. J. R. Puckett, B. A. Raue, M. Ripani, A. Rizzo, G. Rosner, P. Rossi, P. Roy, F. Sabatié, M. S. Saini, C. Salgado, R. A. Schumacher, Y. G. Sharabian, Iu. Skorodumina, G. D. Smith, D. Sokhan, N. Sparveris, S. Stepanyan, I. I. Strakovsky, S. Strauch, M. Taiuti, Ye Tian, B. Torayev, M. Turisini, M. Ungaro, H. Voskanyan, E. Voutier, N. K. Walford, D. P. Watts, X. Wei, L. B. Weinstein, M. H. Wood, M. Yurov, N. Zachariou, J. Zhang, I. Zonta

The cross section of the exclusive $\eta$ electroproduction reaction $ep\to e^\prime p^\prime \eta$ was measured at Jefferson Lab with a 5.75-GeV electron beam and the CLAS detector. Differential cross sections $d^4\sigma/dtdQ^2dx_Bd\phi_\eta$ and structure functions $\sigma_U = \sigma_T+\epsilon\sigma_L, \sigma_{TT}$ and $\sigma_{LT}$, as functions of $t$ were obtained over a wide range of $Q^2$ and $x_B$. Read More

2017Mar
Authors: P. Collins, B. G. Ritchie, M. Dugger, A. V. Anisovich, M. Döring, E. Klempt, V. A. Nikonov, D. Rönchen, D. Sadasivan, A. Sarantsev, K. P. Adhikaria, Z. Akbar, M. J. Amaryana, S. Anefalos Pereira, H. Avakiana, J. Ball, I. Balossino, M. Bashkanova, M. Battaglieri, I. Bedlinskiy, A. S. Bisellik, W. J. Briscoe, W. K. Brooks, V. D. Burkert, Frank Thanh Cao, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, T. Chetry, G. Ciullo, L. Clark, L. Colaneri, P. L. Cole, N. Compton, M. Contalbrigo, O. Cortes, V. Crede, A. D'Angelo, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, R. Dupre, H. Egiyan, A. El Alaoui, L. El Fassi, L. Elouadrhiri, P. Eugenio, E. Fanchini, G. Fedotov, A. Filippi, J. A. Fleming, Y. Ghandilyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, D. I. Glazier, C. Gleason, E. Golovatch, R. W. Gothe, K. A. Griffioen, L. Guo, K. Hafidi, H. Hakobyan, C. Hanretty, N. Harrison, D. Heddle, K. Hicks, M. Holtrop, S. M. Hughes, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, D. Jenkins, H. S. Jo, S. Joosten, D. Keller, G. Khachatryan, M. Khachatryan, M. Khandaker, A. Kim, W. Kim, A. Klein, F. J. Klein, V. Kubarovsky, L. Lanza, P. Lenisa, K. Livingston, I. J. D. MacGregor, N. Markov, B. McKinnon, C. A. Meyer, M. Mirazita, V. Mokeev, R. A. Montgomery, A Movsisyan, C. Munoz Camacho, G. Murdoch, P. Nadel-Turonski, S. Niccolai, G. Niculescu, I. Niculescu, M. Osipenko, A. I. Ostrovidov, M. Paolone, R. Paremuzyan, K. Park, E. Pasyuk, W. Phelps, S. Pisano, O. Pogorelko, J. W. Price, Y. Prok, D. Protopopescu, B. A. Raue, M. Ripani, A. Rizzo, G. Rosner, P. Roy, F. Sabatié, C. Salgado, R. A. Schumacher, Y. G. Sharabian, Iu. Skorodumina, G. D. Smith, D. Sokhan, N. Sparveris, S. Stepanyan, I. I. Strakovsky, S. Strauch, M. Taiuti, Ye Tian, B. Torayev, M. Ungaro, H. Voskanyan, E. Voutier, N. K. Walford, X. Wei, N. Zachariou, J. Zhang

Measurements of the linearly-polarized photon beam asymmetry $\Sigma$ for photoproduction from the proton of $\eta$ and $\eta^\prime$ mesons are reported. A linearly-polarized tagged photon beam produced by coherent bremsstrahlung was incident on a cryogenic hydrogen target within the CEBAF Large Acceptance Spectrometer. Results are presented for the $\gamma p \to \eta p$ reaction for incident photon energies from 1. Read More

Nondestructive evaluation (NDE) techniques are widely used to detect flaws in critical components of systems like aircraft engines, nuclear power plants and oil pipelines in order to prevent catastrophic events. Many modern NDE systems generate image data. In some applications an experienced inspector performs the tedious task of visually examining every image to provide accurate conclusions about the existence of flaws. Read More

Over the last three decades, a large number of evolutionary algorithms have been developed for solving multiobjective optimization problems. However, there lacks an up-to-date and comprehensive software platform for researchers to properly benchmark existing algorithms and for practitioners to apply selected algorithms to solve their real-world problems. The demand of such a common tool becomes even more urgent, when the source code of many proposed algorithms has not been made publicly available. Read More

2016Nov
Authors: P. E. Bosted1, A. Kim2, K. P. Adhikari3, D. Adikaram4, Z. Akbar5, M. J. Amaryan6, S. Anefalos Pereira7, H. Avakian8, R. A. Badui9, J. Ball10, I. Balossino11, M. Battaglieri12, I. Bedlinskiy13, A. S. Biselli14, S. Boiarinov15, W. J. Briscoe16, W. K. Brooks17, S. Bültmann18, V. D. Burkert19, T. Cao20, D. S. Carman21, A. Celentano22, S. Chandavar23, G. Charles24, T. Chetry25, G. Ciullo26, L. Clark27, L. Colaneri28, P. L. Cole29, M. Contalbrigo30, O. Cortes31, V. Crede32, A. D'Angelo33, N. Dashyan34, R. De Vita35, E. De Sanctis36, A. Deur37, C. Djalali38, R. Dupre39, H. Egiyan40, A. El Alaoui41, L. El Fassi42, L. Elouadrhiri43, P. Eugenio44, E. Fanchini45, G. Fedotov46, S. Fegan47, R. Fersch48, A. Filippi49, J. A. Fleming50, T. A. Forest51, A. Fradi52, Y. Ghandilyan53, G. P. Gilfoyle54, F. X. Girod55, D. I. Glazier56, W. Gohn57, E. Golovatch58, R. W. Gothe59, K. A. Griffioen60, M. Guidal61, N. Guler62, H. Hakobyan63, L. Guo64, K. Hafidi65, H. Hakobyan66, C. Hanretty67, N. Harrison68, M. Hattawy69, D. Heddle70, K. Hicks71, G. Hollis72, M. Holtrop73, S. M. Hughes74, D. G. Ireland75, E. L. Isupov76, D. Jenkins77, H. Jiang78, H. S. Jo79, K. Joo80, D. Keller81, G. Khachatryan82, M. Khandaker83, W. Kim84, A. Klei85, F. J. Klein86, S. Koirala87, V. Kubarovsky88, S. E. Kuhn89, L. Lanza90, P. Lenisa91, K. Livingston92, H. Y. Lu93, I. J. D. MacGregor94, N. Markov95, M. Mayer96, M. E. McCracken97, B. McKinnon98, T. Mineeva99, M. Mirazita100, V. I. Mokeev101, R. A. Montgomery102, A Movsisyan103, C. Munoz Camacho104, G. Murdoch105, P. Nadel-Turonski106, A. Ni107, S. Niccolai108, G. Niculescu109, M. Osipenko110, A. I. Ostrovidov111, M. Paolone112, R. Paremuzyan113, K. Park114, E. Pasyuk115, W. Phelps116, S. Pisano117, O. Pogorelko118, J. W. Price119, Y. Prok120, D. Protopopescu121, A. J. R. Puckett122, B. A. Raue123, M. Ripani124, A. Rizzo125, G. Rosner126, P. Rossi127, P. Roy128, F. Sabatié129, M. S. Saini130, R. A. Schumacher131, E. Seder132, Y. G. Sharabian133, Iu. Skorodumina134, G. D. Smith135, D. Sokhan136, N. Sparveris137, I. Stankovic138, S. Stepanyan139, P. Stoler140, I. I. Strakovsky141, S. Strauch142, M. Taiuti143, Ye Tian144, B. Torayev145, M. Ungaro146, H. Voskanyan147, E. Voutier148, N. K. Walford149, D. P. Watts150, X. Wei151, L. B. Weinstein152, N. Zachariou153, J. Zhang154, Z. W. Zhao155, I. Zonta156
Affiliations: 1The CLAS Collaboration, 2The CLAS Collaboration, 3The CLAS Collaboration, 4The CLAS Collaboration, 5The CLAS Collaboration, 6The CLAS Collaboration, 7The CLAS Collaboration, 8The CLAS Collaboration, 9The CLAS Collaboration, 10The CLAS Collaboration, 11The CLAS Collaboration, 12The CLAS Collaboration, 13The CLAS Collaboration, 14The CLAS Collaboration, 15The CLAS Collaboration, 16The CLAS Collaboration, 17The CLAS Collaboration, 18The CLAS Collaboration, 19The CLAS Collaboration, 20The CLAS Collaboration, 21The CLAS Collaboration, 22The CLAS Collaboration, 23The CLAS Collaboration, 24The CLAS Collaboration, 25The CLAS Collaboration, 26The CLAS Collaboration, 27The CLAS Collaboration, 28The CLAS Collaboration, 29The CLAS Collaboration, 30The CLAS Collaboration, 31The CLAS Collaboration, 32The CLAS Collaboration, 33The CLAS Collaboration, 34The CLAS Collaboration, 35The CLAS Collaboration, 36The CLAS Collaboration, 37The CLAS Collaboration, 38The CLAS Collaboration, 39The CLAS Collaboration, 40The CLAS Collaboration, 41The CLAS Collaboration, 42The CLAS Collaboration, 43The CLAS Collaboration, 44The CLAS Collaboration, 45The CLAS Collaboration, 46The CLAS Collaboration, 47The CLAS Collaboration, 48The CLAS Collaboration, 49The CLAS Collaboration, 50The CLAS Collaboration, 51The CLAS Collaboration, 52The CLAS Collaboration, 53The CLAS Collaboration, 54The CLAS Collaboration, 55The CLAS Collaboration, 56The CLAS Collaboration, 57The CLAS Collaboration, 58The CLAS Collaboration, 59The CLAS Collaboration, 60The CLAS Collaboration, 61The CLAS Collaboration, 62The CLAS Collaboration, 63The CLAS Collaboration, 64The CLAS Collaboration, 65The CLAS Collaboration, 66The CLAS Collaboration, 67The CLAS Collaboration, 68The CLAS Collaboration, 69The CLAS Collaboration, 70The CLAS Collaboration, 71The CLAS Collaboration, 72The CLAS Collaboration, 73The CLAS Collaboration, 74The CLAS Collaboration, 75The CLAS Collaboration, 76The CLAS Collaboration, 77The CLAS Collaboration, 78The CLAS Collaboration, 79The CLAS Collaboration, 80The CLAS Collaboration, 81The CLAS Collaboration, 82The CLAS Collaboration, 83The CLAS Collaboration, 84The CLAS Collaboration, 85The CLAS Collaboration, 86The CLAS Collaboration, 87The CLAS Collaboration, 88The CLAS Collaboration, 89The CLAS Collaboration, 90The CLAS Collaboration, 91The CLAS Collaboration, 92The CLAS Collaboration, 93The CLAS Collaboration, 94The CLAS Collaboration, 95The CLAS Collaboration, 96The CLAS Collaboration, 97The CLAS Collaboration, 98The CLAS Collaboration, 99The CLAS Collaboration, 100The CLAS Collaboration, 101The CLAS Collaboration, 102The CLAS Collaboration, 103The CLAS Collaboration, 104The CLAS Collaboration, 105The CLAS Collaboration, 106The CLAS Collaboration, 107The CLAS Collaboration, 108The CLAS Collaboration, 109The CLAS Collaboration, 110The CLAS Collaboration, 111The CLAS Collaboration, 112The CLAS Collaboration, 113The CLAS Collaboration, 114The CLAS Collaboration, 115The CLAS Collaboration, 116The CLAS Collaboration, 117The CLAS Collaboration, 118The CLAS Collaboration, 119The CLAS Collaboration, 120The CLAS Collaboration, 121The CLAS Collaboration, 122The CLAS Collaboration, 123The CLAS Collaboration, 124The CLAS Collaboration, 125The CLAS Collaboration, 126The CLAS Collaboration, 127The CLAS Collaboration, 128The CLAS Collaboration, 129The CLAS Collaboration, 130The CLAS Collaboration, 131The CLAS Collaboration, 132The CLAS Collaboration, 133The CLAS Collaboration, 134The CLAS Collaboration, 135The CLAS Collaboration, 136The CLAS Collaboration, 137The CLAS Collaboration, 138The CLAS Collaboration, 139The CLAS Collaboration, 140The CLAS Collaboration, 141The CLAS Collaboration, 142The CLAS Collaboration, 143The CLAS Collaboration, 144The CLAS Collaboration, 145The CLAS Collaboration, 146The CLAS Collaboration, 147The CLAS Collaboration, 148The CLAS Collaboration, 149The CLAS Collaboration, 150The CLAS Collaboration, 151The CLAS Collaboration, 152The CLAS Collaboration, 153The CLAS Collaboration, 154The CLAS Collaboration, 155The CLAS Collaboration, 156The CLAS Collaboration

Beam-target double-spin asymmetries and target single-spin asymmetries were measured for the exclusive $\pi^0$ electroproduction reaction $\gamma^* p \to p \pi^0$, expanding an analysis of the $\gamma^* p \to n \pi^+$ reaction from the same experiment. The results were obtained from scattering of 6 GeV longitudinally polarized electrons off longitudinally polarized protons using the CEBAF Large Acceptance Spectrometer at Jefferson Lab. The kinematic range covered is $1. Read More

Classic models on opinion dynamics usually focus on a group of agents forming their opinions interactively over single issue. Yet generally consensus can not be achieved over single issue when agents are not completely open to interpersonal influence. In this paper, opinion consensus in social networks with stubborn agents is considered over issue sequences. Read More

2016Jul
Authors: X. Zheng1, K. P. Adhikari2, P. Bosted3, A. Deur4, V. Drozdov5, L. El Fassi6, Hyekoo Kang7, K. Kovacs8, S. Kuhn9, E. Long10, S. K. Phillips11, M. Ripani12, K. Slifer13, L. C. Smith14, D. Adikaram15, Z. Akbar16, M. J. Amaryan17, S. Anefalos Pereira18, G. Asryan19, H. Avakian20, R. A. Badui21, J. Ball22, N. A. Baltzell23, M. Battaglieri24, V. Batourine25, I. Bedlinskiy26, A. S. Biselli27, W. J. Briscoe28, S. Bültmann29, V. D. Burkert30, D. S. Carman31, A. Celentano32, S. Chandavar33, G. Charles34, J. -P. Chen35, T. Chetry36, Seonho Choi37, G. Ciullo38, L. Clark39, L. Colaneri40, P. L. Cole41, N. Compton42, M. Contalbrigo43, V. Crede44, A. D'Angelo45, N. Dashyan46, R. De Vita47, E. De Sanctis48, C. Djalali49, G. E. Dodge50, R. Dupre51, H. Egiyan52, A. El Alaoui53, L. Elouadrhiri54, P. Eugenio55, E. Fanchini56, G. Fedotov57, R. Fersch58, A. Filippi59, J. A. Fleming60, N. Gevorgyan61, Y. Ghandilyan62, G. P. Gilfoyle63, K. L. Giovanetti64, F. X. Girod65, C. Gleason66, E. Golovach67, R. W. Gothe68, K. A. Griffioen69, M. Guidal70, N. Guler71, L. Guo72, C. Hanretty73, N. Harrison74, M. Hattawy75, K. Hicks76, M. Holtrop77, S. M. Hughes78, Y. Ilieva79, D. G. Ireland80, B. S. Ishkhanov81, E. L. Isupov82, D. Jenkins83, H. Jiang84, H. S. Jo85, S. Joosten86, D. Keller87, G. Khachatryan88, M. Khandaker89, A. Kim90, W. Kim91, F. J. Klein92, V. Kubarovsky93, L. Lanza94, P. Lenisa95, K. Livingston96, I . J . D. MacGregor97, N. Markov98, B. McKinnon99, M. Mirazita100, V. Mokeev101, A. Movsisyan102, E. Munevar103, C. Munoz Camacho104, G. Murdoch105, P. Nadel-Turonski106, L. A. Net107, A. Ni108, S. Niccolai109, G. Niculescu110, I. Niculescu111, M. Osipenko112, A. I. Ostrovidov113, M. Paolone114, R. Paremuzyan115, K. Park116, E. Pasyuk117, P. Peng118, S. Pisano119, O. Pogorelko120, J. W. Price121, A. J. R. Puckett122, B. A. Raue123, A. Rizzo124, G. Rosner125, P. Rossi126, P. Roy127, F. Sabatié128, C. Salgado129, R. A. Schumacher130, Y. G. Sharabian131, Iu. Skorodumina132, G. D. Smith133, D. Sokhan134, N. Sparveris135, I. Stankovic136, I. I. Strakovsky137, S. Strauch138, M. Taiuti139, Ye Tian140, M. Ungaro141, H. Voskanyan142, E. Voutier143, N. K. Walford144, D. P. Watts145, X. Wei146, L. B. Weinstein147, M. H. Wood148, N. Zachariou149, J. Zhang150
Affiliations: 1The CLAS Collaboration, 2The CLAS Collaboration, 3The CLAS Collaboration, 4The CLAS Collaboration, 5The CLAS Collaboration, 6The CLAS Collaboration, 7The CLAS Collaboration, 8The CLAS Collaboration, 9The CLAS Collaboration, 10The CLAS Collaboration, 11The CLAS Collaboration, 12The CLAS Collaboration, 13The CLAS Collaboration, 14The CLAS Collaboration, 15The CLAS Collaboration, 16The CLAS Collaboration, 17The CLAS Collaboration, 18The CLAS Collaboration, 19The CLAS Collaboration, 20The CLAS Collaboration, 21The CLAS Collaboration, 22The CLAS Collaboration, 23The CLAS Collaboration, 24The CLAS Collaboration, 25The CLAS Collaboration, 26The CLAS Collaboration, 27The CLAS Collaboration, 28The CLAS Collaboration, 29The CLAS Collaboration, 30The CLAS Collaboration, 31The CLAS Collaboration, 32The CLAS Collaboration, 33The CLAS Collaboration, 34The CLAS Collaboration, 35The CLAS Collaboration, 36The CLAS Collaboration, 37The CLAS Collaboration, 38The CLAS Collaboration, 39The CLAS Collaboration, 40The CLAS Collaboration, 41The CLAS Collaboration, 42The CLAS Collaboration, 43The CLAS Collaboration, 44The CLAS Collaboration, 45The CLAS Collaboration, 46The CLAS Collaboration, 47The CLAS Collaboration, 48The CLAS Collaboration, 49The CLAS Collaboration, 50The CLAS Collaboration, 51The CLAS Collaboration, 52The CLAS Collaboration, 53The CLAS Collaboration, 54The CLAS Collaboration, 55The CLAS Collaboration, 56The CLAS Collaboration, 57The CLAS Collaboration, 58The CLAS Collaboration, 59The CLAS Collaboration, 60The CLAS Collaboration, 61The CLAS Collaboration, 62The CLAS Collaboration, 63The CLAS Collaboration, 64The CLAS Collaboration, 65The CLAS Collaboration, 66The CLAS Collaboration, 67The CLAS Collaboration, 68The CLAS Collaboration, 69The CLAS Collaboration, 70The CLAS Collaboration, 71The CLAS Collaboration, 72The CLAS Collaboration, 73The CLAS Collaboration, 74The CLAS Collaboration, 75The CLAS Collaboration, 76The CLAS Collaboration, 77The CLAS Collaboration, 78The CLAS Collaboration, 79The CLAS Collaboration, 80The CLAS Collaboration, 81The CLAS Collaboration, 82The CLAS Collaboration, 83The CLAS Collaboration, 84The CLAS Collaboration, 85The CLAS Collaboration, 86The CLAS Collaboration, 87The CLAS Collaboration, 88The CLAS Collaboration, 89The CLAS Collaboration, 90The CLAS Collaboration, 91The CLAS Collaboration, 92The CLAS Collaboration, 93The CLAS Collaboration, 94The CLAS Collaboration, 95The CLAS Collaboration, 96The CLAS Collaboration, 97The CLAS Collaboration, 98The CLAS Collaboration, 99The CLAS Collaboration, 100The CLAS Collaboration, 101The CLAS Collaboration, 102The CLAS Collaboration, 103The CLAS Collaboration, 104The CLAS Collaboration, 105The CLAS Collaboration, 106The CLAS Collaboration, 107The CLAS Collaboration, 108The CLAS Collaboration, 109The CLAS Collaboration, 110The CLAS Collaboration, 111The CLAS Collaboration, 112The CLAS Collaboration, 113The CLAS Collaboration, 114The CLAS Collaboration, 115The CLAS Collaboration, 116The CLAS Collaboration, 117The CLAS Collaboration, 118The CLAS Collaboration, 119The CLAS Collaboration, 120The CLAS Collaboration, 121The CLAS Collaboration, 122The CLAS Collaboration, 123The CLAS Collaboration, 124The CLAS Collaboration, 125The CLAS Collaboration, 126The CLAS Collaboration, 127The CLAS Collaboration, 128The CLAS Collaboration, 129The CLAS Collaboration, 130The CLAS Collaboration, 131The CLAS Collaboration, 132The CLAS Collaboration, 133The CLAS Collaboration, 134The CLAS Collaboration, 135The CLAS Collaboration, 136The CLAS Collaboration, 137The CLAS Collaboration, 138The CLAS Collaboration, 139The CLAS Collaboration, 140The CLAS Collaboration, 141The CLAS Collaboration, 142The CLAS Collaboration, 143The CLAS Collaboration, 144The CLAS Collaboration, 145The CLAS Collaboration, 146The CLAS Collaboration, 147The CLAS Collaboration, 148The CLAS Collaboration, 149The CLAS Collaboration, 150The CLAS Collaboration

We report measurements of target- and double-spin asymmetries for the exclusive channel $\vec e\vec p\to e\pi^+ (n)$ in the nucleon resonance region at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). These asymmetries were extracted from data obtained using a longitudinally polarized NH$_3$ target and a longitudinally polarized electron beam with energies 1.1, 1. Read More

We demonstrated for the first time the condensation and precipitation (or snowfall) induced by a corona discharge inside a cloud chamber. Ionic wind was found to have played a more significant role than ions as extra Cloud Condensation Nuclei (CCN). 2. Read More

For CM elliptic curve over rational field with analytic rank one, for any potential good ordinary prime p, not dividing the number of roots of unity in the complex multiplication field, we show the p-part of its Shafarevich-Tate group has order predicted by the Birch and Swinnerton-Dyer conjecture. Read More

2016Apr
Authors: P. E. Bosted1, A. S. Biselli2, S. Careccia3, G. Dodge4, R. Fersch5, S. E. Kuhn6, J. Pierce7, Y. Prok8, X. Zheng9, K. P. Adhikari10, D. Adikaram11, Z. Akbar12, M. J. Amaryan13, S. Anefalos Pereira14, G. Asryan15, H. Avakian16, R. A. Badui17, J. Ball18, N. A. Baltzell19, M. Battaglieri20, V. Batourine21, I. Bedlinskiy22, S. Boiarinov23, W. J. Briscoe24, S. Bültmann25, V. D. Burkert26, T. Cao27, D. S. Carman28, A. Celentano29, S. Chandavar30, G. Charles31, T. Chetry32, G. Ciullo33, L. Clark34, L. Colaneri35, P. L. Cole36, M. Contalbrigo37, O. Cortes38, V. Crede39, A. D'Angelo40, N. Dashyan41, R. De Vita42, A. Deur43, C. Djalali44, R. Dupre45, H. Egiyan46, A. El Alaoui47, L. El Fassi48, P. Eugenio49, E. Fanchini50, G. Fedotov51, A. Filippi52, J. A. Fleming53, T. A. Forest54, A. Fradi55, M. Garçon56, N. Gevorgyan57, Y. Ghandilyan58, G. P. Gilfoyle59, K. L. Giovanetti60, F. X. Girod61, C. Gleason62, W. Gohn63, E. Golovatch64, R. W. Gothe65, K. A. Griffioen66, N. Guler67, L. Guo68, K. Hafidi69, C. Hanretty70, N. Harrison71, M. Hattawy72, D. Heddle73, K. Hicks74, M. Holtrop75, S. M. Hughes76, Y. Ilieva77, D. G. Ireland78, B. S. Ishkhanov79, E. L. Isupov80, D. Jenkins81, H. Jiang82, H. S. Jo83, K. Joo84, S. Joosten85, D. Keller86, M. Khandaker87, W. Kim88, A. Klein89, F. J. Klein90, V. Kubarovsky91, S. V. Kuleshov92, L. Lanza93, P. Lenisa94, K. Livingston95, H. Y. Lu96, I . J . D. MacGregor97, N. Markov98, M. E. McCracken99, B. McKinnon100, C. A. Meyer101, R. Minehart102, M. Mirazita103, V. Mokeev104, A Movsisyan105, E. Munevar106, C. Munoz Camacho107, P. Nadel-Turonski108, L. A. Net109, A. Ni110, S. Niccolai111, G. Niculescu112, I. Niculescu113, M. Osipenko114, A. I. Ostrovidov115, R. Paremuzyan116, K. Park117, E. Pasyuk118, P. Peng119, W. Phelps120, S. Pisano121, O. Pogorelko122, J. W. Price123, S. Procureur124, D. Protopopescu125, A. J. R. Puckett126, B. A. Raue127, M. Ripani128, A. Rizzo129, G. Rosner130, P. Rossi131, P. Roy132, F. Sabatié133, C. Salgado134, R. A. Schumacher135, E. Seder136, Y. G. Sharabian137, A. Simonyan138, Iu. Skorodumina139, G. D. Smith140, N. Sparveris141, Ivana Stankovic142, S. Stepanyan143, I. I. Strakovsky144, S. Strauch145, V. Sytnik146, M. Taiuti147, Ye Tian148, B. Torayev149, M. Ungaro150, H. Voskanyan151, E. Voutier152, N. K. Walford153, D. P. Watts154, X. Wei155, L. B. Weinstein156, M. H. Wood157, N. Zachariou158, L. Zana159, J. Zhang160, Z. W. Zhao161, I. Zonta162
Affiliations: 1CLAS Collaboration, 2CLAS Collaboration, 3CLAS Collaboration, 4CLAS Collaboration, 5CLAS Collaboration, 6CLAS Collaboration, 7CLAS Collaboration, 8CLAS Collaboration, 9CLAS Collaboration, 10CLAS Collaboration, 11CLAS Collaboration, 12CLAS Collaboration, 13CLAS Collaboration, 14CLAS Collaboration, 15CLAS Collaboration, 16CLAS Collaboration, 17CLAS Collaboration, 18CLAS Collaboration, 19CLAS Collaboration, 20CLAS Collaboration, 21CLAS Collaboration, 22CLAS Collaboration, 23CLAS Collaboration, 24CLAS Collaboration, 25CLAS Collaboration, 26CLAS Collaboration, 27CLAS Collaboration, 28CLAS Collaboration, 29CLAS Collaboration, 30CLAS Collaboration, 31CLAS Collaboration, 32CLAS Collaboration, 33CLAS Collaboration, 34CLAS Collaboration, 35CLAS Collaboration, 36CLAS Collaboration, 37CLAS Collaboration, 38CLAS Collaboration, 39CLAS Collaboration, 40CLAS Collaboration, 41CLAS Collaboration, 42CLAS Collaboration, 43CLAS Collaboration, 44CLAS Collaboration, 45CLAS Collaboration, 46CLAS Collaboration, 47CLAS Collaboration, 48CLAS Collaboration, 49CLAS Collaboration, 50CLAS Collaboration, 51CLAS Collaboration, 52CLAS Collaboration, 53CLAS Collaboration, 54CLAS Collaboration, 55CLAS Collaboration, 56CLAS Collaboration, 57CLAS Collaboration, 58CLAS Collaboration, 59CLAS Collaboration, 60CLAS Collaboration, 61CLAS Collaboration, 62CLAS Collaboration, 63CLAS Collaboration, 64CLAS Collaboration, 65CLAS Collaboration, 66CLAS Collaboration, 67CLAS Collaboration, 68CLAS Collaboration, 69CLAS Collaboration, 70CLAS Collaboration, 71CLAS Collaboration, 72CLAS Collaboration, 73CLAS Collaboration, 74CLAS Collaboration, 75CLAS Collaboration, 76CLAS Collaboration, 77CLAS Collaboration, 78CLAS Collaboration, 79CLAS Collaboration, 80CLAS Collaboration, 81CLAS Collaboration, 82CLAS Collaboration, 83CLAS Collaboration, 84CLAS Collaboration, 85CLAS Collaboration, 86CLAS Collaboration, 87CLAS Collaboration, 88CLAS Collaboration, 89CLAS Collaboration, 90CLAS Collaboration, 91CLAS Collaboration, 92CLAS Collaboration, 93CLAS Collaboration, 94CLAS Collaboration, 95CLAS Collaboration, 96CLAS Collaboration, 97CLAS Collaboration, 98CLAS Collaboration, 99CLAS Collaboration, 100CLAS Collaboration, 101CLAS Collaboration, 102CLAS Collaboration, 103CLAS Collaboration, 104CLAS Collaboration, 105CLAS Collaboration, 106CLAS Collaboration, 107CLAS Collaboration, 108CLAS Collaboration, 109CLAS Collaboration, 110CLAS Collaboration, 111CLAS Collaboration, 112CLAS Collaboration, 113CLAS Collaboration, 114CLAS Collaboration, 115CLAS Collaboration, 116CLAS Collaboration, 117CLAS Collaboration, 118CLAS Collaboration, 119CLAS Collaboration, 120CLAS Collaboration, 121CLAS Collaboration, 122CLAS Collaboration, 123CLAS Collaboration, 124CLAS Collaboration, 125CLAS Collaboration, 126CLAS Collaboration, 127CLAS Collaboration, 128CLAS Collaboration, 129CLAS Collaboration, 130CLAS Collaboration, 131CLAS Collaboration, 132CLAS Collaboration, 133CLAS Collaboration, 134CLAS Collaboration, 135CLAS Collaboration, 136CLAS Collaboration, 137CLAS Collaboration, 138CLAS Collaboration, 139CLAS Collaboration, 140CLAS Collaboration, 141CLAS Collaboration, 142CLAS Collaboration, 143CLAS Collaboration, 144CLAS Collaboration, 145CLAS Collaboration, 146CLAS Collaboration, 147CLAS Collaboration, 148CLAS Collaboration, 149CLAS Collaboration, 150CLAS Collaboration, 151CLAS Collaboration, 152CLAS Collaboration, 153CLAS Collaboration, 154CLAS Collaboration, 155CLAS Collaboration, 156CLAS Collaboration, 157CLAS Collaboration, 158CLAS Collaboration, 159CLAS Collaboration, 160CLAS Collaboration, 161CLAS Collaboration, 162CLAS Collaboration

Beam-target double spin asymmetries and target single-spin asymmetries in exclusive $\pi^+$ and $\pi^-$ electroproduction were obtained from scattering of 1.6 to 5.7 GeV longitudinally polarized electrons from longitudinally polarized protons (for $\pi^+$) and deuterons (for $\pi^-$) using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Read More

Full quantum state tomography (FQST) plays a unique role in the estimation of the state of a quantum system without \emph{a priori} knowledge or assumptions. Unfortunately, since FQST requires informationally (over)complete measurements, both the number of measurement bases and the computational complexity of data processing suffer an exponential growth with the size of the quantum system. A 14-qubit entangled state has already been experimentally prepared in an ion trap, and the data processing capability for FQST of a 14-qubit state seems to be far away from practical applications. Read More

To fulfill the requirements for testing the photomultiplier tubes (PMTs) of the electromagnetic detec- tor at the Large High Altitude Air Shower Observatory (LHAASO), a multi-functional PMT test bench with a two dimensional scanning system has been developed. With this 2D scanning system, 16 PMTs can be scanned simultaneously for characteristics tests, including uniformity, cathode transit time difference, single photo-electron spectrum, gain vs. high voltage, linear behavior and dark noise. Read More

Stimulated Raman adiabatic passage (STIRAP) offers significant advantages for coherent population transfer between un- or weakly-coupled states and has the potential of realizing efficient quantum gate, qubit entanglement, and quantum information transfer. Here we report on the realization of STIRAP in a superconducting phase qutrit - a ladder-type system in which the ground state population is coherently transferred to the second-excited state via the dark state subspace. The result agrees well with the numerical simulation of the master equation, which further demonstrates that with the state-of-the-art superconducting qutrits the transfer efficiency readily exceeds $99\%$ while keeping the population in the first-excited state below $1\%$. Read More

2015Jul
Authors: M. E. McCracken, M. Bellis, K. P. Adhikari, D. Adikaram, Z. Akbar, S. Anefalos Pereira, R. A. Badui, J. Ball, N. A. Baltzell, M. Battaglieri, V. Batourine, I. Bedlinskiy, A. S. Biselli, S. Boiarinov, W. J. Briscoe, W. K. Brooks, V. D. Burkert, T. Cao, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, L. Colaneri, P. L. Cole, M. Contalbrigo, O. Cortes, V. Crede, A. D'Angelo, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, G. E. Dodge, R. Dupre, A. El Alaoui, L. El Fassi, E. Elouadrhiri, P. Eugenio, G. Fedotov, S. Fegan, R. Fersch, A. Filippi, J. A. Fleming, B. Garillon, N. Gevorgyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, E. Golovatch, R. W. Gothe, K. A. Griffioen, M. Guidal, L. Guo, K. Hafidi, H. Hakobyan, C. Hanretty, M. Hattawy, K. Hicks, M. Holtrop, S. M. Hughes, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, D. Jenkins, H. Jiang, H. S. Jo, D. Keller, G. Khachatryan, M. Khandaker, A. Kim, W. Kim, A. Klein, F. J. Klein, V. Kubarovsky, P. Lenisa, K. Livingston, H. Y. Lu, I. J. D. MacGregor, M. Mayer, B. McKinnon, M. D. Mestayer, C. A. Meyer, M. Mirazita, V. Mokeev, C. I. Moody, K. Moriya, C. Munoz Camacho, P. Nadel-Turonski, L. A. Net, S. Niccolai, M. Osipenko, A. I. Ostrovidov, K. Park, E. Pasyuk, S. Pisano, O. Pogorelko, J. W. Price, S. Procureur, Y. Prok, B. A. Raue, M. Ripani, A. Rizzo, G. Rosner, P. Roy, F. Sabatié, C. Salgado, R. A. Schumacher, E. Seder, Y. G. Sharabian, Iu. Skorodumina, D. Sokhan, N. Sparveris, P. Stoler, I. I. Strakovsky, S. Strauch, V. Sytnik, Ye Tian, M. Ungaro, H. Voskanyan, E. Voutier, N. K. Walford, D. P. Watts, X. Wei, M. H. Wood, N. Zachariou, L. Zana, J. Zhang, Z. W. Zhao, I. Zonta

We present a search for ten baryon-number violating decay modes of $\Lambda$ hyperons using the CLAS detector at Jefferson Laboratory. Nine of these decay modes result in a single meson and single lepton in the final state ($\Lambda \rightarrow m \ell$) and conserve either the sum or the difference of baryon and lepton number ($B \pm L$). The tenth decay mode ($\Lambda \rightarrow \bar{p}\pi^+$) represents a difference in baryon number of two units and no difference in lepton number. Read More

2015Jul
Authors: I. Senderovich, B. T. Morrison, M. Dugger, B. G. Ritchie, E. Pasyuk, R. Tucker, J. Brock, C. Carlin, C. D. Keith, D. G. Meekins, M. L. Seely, D. R, M. D, P. Collins, K. P. Adhikari, D. Adikaram, Z. Akbar, M. D. Anderson, S. Anefalos Pereira, R. A. Badui, J. Ball, N. A. Baltzell, M. Battaglieri, V. Batourine, I. Bedlinskiy, A. S. Biselli, S. Boiarinov, W. J. Briscoe, W. K. Brooks, V. D. Burkert, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, L. Colaneri, P. L. Cole, M. Contalbrigo, O. Cortes, V. Crede, A. D'Angelo, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, R. Dupre, H. Egiyan, A. El Alaoui, L. El Fassi, A. Fradi, L. Elouadrhiri, P. Eugenio, G. Fedotov, S. Fegan, A. Filippi, J. A. Fleming, B. Garillon, Y. Ghandilyan, G. P. Gilfoyle, K. L. Giovanetti, F. -X. Girod, D. I. Glazier, J. T. Goetz, W. Gohn, E. Golovatch, R. W. Gothe, K. A. Griffioen, M. Guidal, L. Guo, K. Hafidi, H. Hakobyan, C. Hanretty, M. Hattawy, K. Hicks, D. Ho, M. Holtrop, S. M. Hughes, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, D. Jenkins, H. Jiang, H. S. Jo, K. Joo, S. Joosten, D. Keller, G. Khachatryan, M. Khandaker, A. Kim, F. J. Klein, V. Kubarovsky, M. C. Kunkel, P. Lenisa, K. Livingston, H. Y. Lu, I. J. D. MacGregor, P. Mattione, B. McKinnon, C. A. Meyer, T. Mineeva, V. Mokeev, R. A. Montgomery, A. Movsisyan, C. Munoz Camacho, P. Nadel-Turonski, L. A. Net, S. Niccolai, G. Niculescu, I. Niculescu, M. Osipenko, K. Park, S. Park, P. Peng, W. Phelps, S. Pisano, O. Pogorelko, J. W. Price, Y. Prok, A. J. R. Puckett, M. Ripani, A. Rizzo, G. Rosner, P. Roy, F. Sabatie, C. Salgado, D. Schott, R. A. Schumacher, E. Seder, A. Simonyan, Iu. Skorodumina, G. D. Smith, D. I. Sober, D. Sokhan, N. Sparveris, S. Stepanyan, P. Stoler, I. I. Strakovsky, S. Strauch, V. Sytnik, Ye Tian, M. Ungaro, H. Voskanyan, E. Voutier, N. K. Walford, X. Wei, M. H. Wood, N. Zachariou, L. Zana, J. Zhang, Z. W. Zhao, I. Zonta

Results are presented for the first measurement of the double-polarization helicity asymmetry E for the $\eta$ photoproduction reaction $\gamma p \rightarrow \eta p$. Data were obtained using the FROzen Spin Target (FROST) with the CLAS spectrometer in Hall B at Jefferson Lab, covering a range of center-of-mass energy W from threshold to 2.15 GeV and a large range in center-of-mass polar angle. Read More

2015May
Authors: N. Guler, R. G. Fersch, S. E. Kuhn, P. Bosted, K. A. Griffioen, C. Keith, R. Minehart, Y. Prok, K. P. Adhikari, D. Adikaram, M. J. Amaryan, M. D. Anderson, S. Anefalos Pereira, J. Ball, M. Battaglieri, V. Batourine, I. Bedlinskiy, W. J. Briscoe, W. K. Brooks, S. Bultmann, V. D. Burkert, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, L. Colaneri, P. L. Cole, M. Contalbrigo, D. Crabb, V. Crede, A. D Angelo, N. Dashyan, A. Deur, C. Djalali, G. E. Dodge, R. Dupre, A. El Alaoui, L. El Fassi, L. Elouadrhiri, P. Eugenio, G. Fedotov, S. Fegan, A. Filippi, J. A. Fleming, T. A. Forest, B. Garillon, M. Garcon, N. Gevorgyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, J. T. Goetz, E. Golovatch, R. W. Gothe, M. Guidal, L. Guo, K. Hafidi, H. Hakobyan, N. Harrison, M. Hattawy, K. Hicks, D. Ho, M. Holtrop, S. M. Hughes, C. E. Hyde, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, H. S. Jo, K. Joo, S. Joosten, D. Keller, M. Khandaker, A. Kim, W. Kim, A. Klein, F. J. Klein, V. Kubarovsky, S. V. Kuleshov, K. Livingston, H. Y. Lu, I. J. D. MacGregor, B. McKinnon, M. Mirazita, V. Mokeev, R. A. Montgomery, A Movsisyan, C. Munoz Camacho, P. Nadel-Turonski, L. A. Net, I. Niculescu, M. Osipenko, A. I. Ostrovidov, K. Park, E. Pasyuk, S. Pisano, O. Pogorelko, J. W. Price, S. Procureur, M. Ripani, A. Rizzo, G. Rosner, P. Rossi, P. Roy, F. Sabatie, C. Salgado, D. Schott, R. A. Schumacher, E. Seder, A. Simonyan, Iu. Skorodumina, D. Sokhan, N. Sparveris, I. I. Strakovsky, S. Strauch, V. Sytnik, Ye Tian, S. Tkachenko, M. Ungaro, E. Voutier, N. K. Walford, X. Wei, L. B. Weinstein, M. H. Wood, N. Zachariou, L. Zana, J. Zhang, Z. W. Zhao, I. Zonta

We present the final results for the deuteron spin structure functions obtained from the full data set collected with Jefferson Lab's CLAS in 2000-2001. Polarized electrons with energies of 1.6, 2. Read More

2015Mar
Authors: Nicholas Zachariou, Yordanka Ilieva, Nikolay Ya. Ivanov, Misak M Sargsian, Robert Avakian, Gerald Feldman, Pawel Nadel-Turonski, K. P. Adhikari, D. Adikaram, M. D. Anderson, S. Anefalos Pereira, H. Avakian, R. A. Badui, N. A. Baltzell, M. Battaglieri, V. Baturin, I. Bedlinskiy, A. S. Biselli, W. J. Briscoe, W. K. Brooks, V. D. Burkert, T. Cao, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, L. Colaneri, P. L. Cole, N. Compton, M. Contalbrigo, O. Cortes, V. Crede, A. D'Angelo, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, R. Dupre, H. Egiyan, A. El Alaoui, L. El Fassi, L. Elouadrhiri, G. Fedotov, S. Fegan, A. Filippi, J. A. Fleming, T. A. Forest, A. Fradi, N. Gevorgyan, Y. Ghandilyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, D. I. Glazier, E. Golovatch, R. W. Gothe, K. A. Griffioen, M. Guidal, K. Hafidi, C. Hanretty, N. Harrison, M. Hattawy, K. Hicks, D. Ho, M. Holtrop, S. M. Hughes, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, H. Jiang, H. S. Jo, K. Joo, D. Keller, G. Khachatryan, M. Khandaker, A. Kim, W. Kim, F. J. Klein, V. Kubarovsky, P. Lenisa, K. Livingston, H. Y. Lu, I . J . D. MacGregor, N. Markov, P. T. Mattione, B. McKinnon, T. Mineeva, M. Mirazita, V. I. Mokeeev, R. A. Montgomery, H. Moutarde, C. Munoz Camacho, L. A. Net, S. Niccolai, G. Niculescu, I. Niculescu, M. Osipenko, A. I. Ostrovidov, K. Park, E. Pasyuk, W. Phelps, J. J. Phillips, S. Pisano, O. Pogorelko, S. Pozdniakov, J. W. Price, S. Procureur, Y. Prok, D. Protopopescu, A. J. R. Puckett, M. Ripani, A. Rizzo, G. Rosner, P. Rossi, P. Roy, F. Sabatié, C. Salgado, D. Schott, R. A. Schumacher, E. Seder, I. Senderovich, Y. G. Sharabian, Iu. Skorodumina, G. D. Smith, D. I. Sober, D. Sokhan, N. Sparveris, S. Stepanyan, S. Strauch, V. Sytnik, M. Taiuti, Ye Tian, M. Ungaro, H. Voskanyan, E. Voutier, N. K. Walford, D. Watts, X. Wei, M. H. Wood, L. Zana, J. Zhang, Z. W. Zhao, I. Zonta, for the CLAS collaboration

The beam-spin asymmetry, $\Sigma$, for the reaction $\gamma d\rightarrow pn$ has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, $\theta_{c. Read More

2015Mar
Authors: S. Strauch1, W. J. Briscoe2, M. Döring3, E. Klempt4, V. A. Nikonov5, E. Pasyuk6, D. Rönchen7, A. V. Sarantsev8, I. Strakovsky9, R. Workman10, K. P. Adhikari11, D. Adikaram12, M. D. Anderson13, S. Anefalos Pereira14, A. V. Anisovich15, R. A. Badui16, J. Ball17, V. Batourine18, M. Battaglieri19, I. Bedlinskiy20, N. Benmouna21, A. S. Biselli22, J. Brock23, W. K. Brooks24, V. D. Burkert25, T. Cao26, C. Carlin27, D. S. Carman28, A. Celentano29, S. Chandavar30, G. Charles31, L. Colaneri32, P. L. Cole33, N. Compton34, M. Contalbrigo35, O. Cortes36, V. Crede37, N. Dashyan38, A. D'Angelo39, R. De Vita40, E. De Sanctis41, A. Deur42, C. Djalali43, M. Dugger44, R. Dupre45, H. Egiyan46, A. El Alaoui47, L. El Fassi48, L. Elouadrhiri49, P. Eugenio50, G. Fedotov51, S. Fegan52, A. Filippi53, J. A. Fleming54, T. A. Forest55, A. Fradi56, N. Gevorgyan57, Y. Ghandilyan58, K. L. Giovanetti59, F. X. Girod60, D. I. Glazier61, W. Gohn62, E. Golovatch63, R. W. Gothe64, K. A. Griffioen65, M. Guidal66, L. Guo67, K. Hafidi68, H. Hakobyan69, C. Hanretty70, N. Harrison71, M. Hattawy72, K. Hicks73, D. Ho74, M. Holtrop75, S. M. Hughes76, Y. Ilieva77, D. G. Ireland78, B. S. Ishkhanov79, E. L. Isupov80, D. Jenkins81, H. Jiang82, H. S. Jo83, K. Joo84, S. Joosten85, C. D. Keith86, D. Keller87, G. Khachatryan88, M. Khandaker89, A. Kim90, W. Kim91, A. Klein92, F. J. Klein93, V. Kubarovsky94, S. E. Kuhn95, P. Lenisa96, K. Livingston97, H. Y. Lu98, I . J . D. MacGregor99, N. Markov100, B. McKinnon101, D. G. Meekins102, C. A. Meyer103, V. Mokeev104, R. A. Montgomery105, C. I. Moody106, H. Moutarde107, A Movsisyan108, E. Munevar109, C. Munoz Camacho110, P. Nadel-Turonski111, L. A. Net112, S. Niccolai113, G. Niculescu114, I. Niculescu115, M. Osipenko116, A. I. Ostrovidov117, K. Park118, P. Peng119, W. Phelps120, J. J. Phillips121, S. Pisano122, O. Pogorelko123, S. Pozdniakov124, J. W. Price125, S. Procureur126, Y. Prok127, D. Protopopescu128, A. J. R. Puckett129, B. A. Raue130, M. Ripani131, B. G. Ritchie132, A. Rizzo133, G. Rosner134, P. Roy135, F. Sabatié136, C. Salgado137, D. Schott138, R. A. Schumacher139, E. Seder140, M. L. Seely141, I Senderovich142, Y. G. Sharabian143, A. Simonyan144, Iu. Skorodumina145, G. D. Smith146, D. I. Sober147, D. Sokhan148, N. Sparveris149, P. Stoler150, S. Stepanyan151, V. Sytnik152, M. Taiuti153, Ye Tian154, A. Trivedi155, R. Tucker156, M. Ungaro157, H. Voskanyan158, E. Voutier159, N. K. Walford160, D. P. Watts161, X. Wei162, M. H. Wood163, N. Zachariou164, L. Zana165, J. Zhang166, Z. W. Zhao167, I. Zonta168
Affiliations: 1The CLAS Collaboration, 2The CLAS Collaboration, 3The CLAS Collaboration, 4The CLAS Collaboration, 5The CLAS Collaboration, 6The CLAS Collaboration, 7The CLAS Collaboration, 8The CLAS Collaboration, 9The CLAS Collaboration, 10The CLAS Collaboration, 11The CLAS Collaboration, 12The CLAS Collaboration, 13The CLAS Collaboration, 14The CLAS Collaboration, 15The CLAS Collaboration, 16The CLAS Collaboration, 17The CLAS Collaboration, 18The CLAS Collaboration, 19The CLAS Collaboration, 20The CLAS Collaboration, 21The CLAS Collaboration, 22The CLAS Collaboration, 23The CLAS Collaboration, 24The CLAS Collaboration, 25The CLAS Collaboration, 26The CLAS Collaboration, 27The CLAS Collaboration, 28The CLAS Collaboration, 29The CLAS Collaboration, 30The CLAS Collaboration, 31The CLAS Collaboration, 32The CLAS Collaboration, 33The CLAS Collaboration, 34The CLAS Collaboration, 35The CLAS Collaboration, 36The CLAS Collaboration, 37The CLAS Collaboration, 38The CLAS Collaboration, 39The CLAS Collaboration, 40The CLAS Collaboration, 41The CLAS Collaboration, 42The CLAS Collaboration, 43The CLAS Collaboration, 44The CLAS Collaboration, 45The CLAS Collaboration, 46The CLAS Collaboration, 47The CLAS Collaboration, 48The CLAS Collaboration, 49The CLAS Collaboration, 50The CLAS Collaboration, 51The CLAS Collaboration, 52The CLAS Collaboration, 53The CLAS Collaboration, 54The CLAS Collaboration, 55The CLAS Collaboration, 56The CLAS Collaboration, 57The CLAS Collaboration, 58The CLAS Collaboration, 59The CLAS Collaboration, 60The CLAS Collaboration, 61The CLAS Collaboration, 62The CLAS Collaboration, 63The CLAS Collaboration, 64The CLAS Collaboration, 65The CLAS Collaboration, 66The CLAS Collaboration, 67The CLAS Collaboration, 68The CLAS Collaboration, 69The CLAS Collaboration, 70The CLAS Collaboration, 71The CLAS Collaboration, 72The CLAS Collaboration, 73The CLAS Collaboration, 74The CLAS Collaboration, 75The CLAS Collaboration, 76The CLAS Collaboration, 77The CLAS Collaboration, 78The CLAS Collaboration, 79The CLAS Collaboration, 80The CLAS Collaboration, 81The CLAS Collaboration, 82The CLAS Collaboration, 83The CLAS Collaboration, 84The CLAS Collaboration, 85The CLAS Collaboration, 86The CLAS Collaboration, 87The CLAS Collaboration, 88The CLAS Collaboration, 89The CLAS Collaboration, 90The CLAS Collaboration, 91The CLAS Collaboration, 92The CLAS Collaboration, 93The CLAS Collaboration, 94The CLAS Collaboration, 95The CLAS Collaboration, 96The CLAS Collaboration, 97The CLAS Collaboration, 98The CLAS Collaboration, 99The CLAS Collaboration, 100The CLAS Collaboration, 101The CLAS Collaboration, 102The CLAS Collaboration, 103The CLAS Collaboration, 104The CLAS Collaboration, 105The CLAS Collaboration, 106The CLAS Collaboration, 107The CLAS Collaboration, 108The CLAS Collaboration, 109The CLAS Collaboration, 110The CLAS Collaboration, 111The CLAS Collaboration, 112The CLAS Collaboration, 113The CLAS Collaboration, 114The CLAS Collaboration, 115The CLAS Collaboration, 116The CLAS Collaboration, 117The CLAS Collaboration, 118The CLAS Collaboration, 119The CLAS Collaboration, 120The CLAS Collaboration, 121The CLAS Collaboration, 122The CLAS Collaboration, 123The CLAS Collaboration, 124The CLAS Collaboration, 125The CLAS Collaboration, 126The CLAS Collaboration, 127The CLAS Collaboration, 128The CLAS Collaboration, 129The CLAS Collaboration, 130The CLAS Collaboration, 131The CLAS Collaboration, 132The CLAS Collaboration, 133The CLAS Collaboration, 134The CLAS Collaboration, 135The CLAS Collaboration, 136The CLAS Collaboration, 137The CLAS Collaboration, 138The CLAS Collaboration, 139The CLAS Collaboration, 140The CLAS Collaboration, 141The CLAS Collaboration, 142The CLAS Collaboration, 143The CLAS Collaboration, 144The CLAS Collaboration, 145The CLAS Collaboration, 146The CLAS Collaboration, 147The CLAS Collaboration, 148The CLAS Collaboration, 149The CLAS Collaboration, 150The CLAS Collaboration, 151The CLAS Collaboration, 152The CLAS Collaboration, 153The CLAS Collaboration, 154The CLAS Collaboration, 155The CLAS Collaboration, 156The CLAS Collaboration, 157The CLAS Collaboration, 158The CLAS Collaboration, 159The CLAS Collaboration, 160The CLAS Collaboration, 161The CLAS Collaboration, 162The CLAS Collaboration, 163The CLAS Collaboration, 164The CLAS Collaboration, 165The CLAS Collaboration, 166The CLAS Collaboration, 167The CLAS Collaboration, 168The CLAS Collaboration

First results from the longitudinally polarized frozen-spin target (FROST) program are reported. The double-polarization observable E, for the reaction $\vec \gamma \vec p \to \pi^+n$, has been measured using a circularly polarized tagged-photon beam, with energies from 0.35 to 2. Read More

In this article, we tentatively assign the $Y(4140)$, $Y(4274)$ and $X(4350)$ to be the scalar and tensor $cs\bar{c}\bar{s}$ tetraquark states, respectively, and study them with the QCD sum rules. In the operator product expansion, we take into account the vacuum condensates up to dimension-10. In calculations, we use the formula $\mu=\sqrt{M^2_{X/Y/Z}-(2{\mathbb{M}}_c)^2}$ to determine the energy scales of the QCD spectral densities. Read More

A nonzero rational number is called a cube sum if it is of form $a^3+b^3$ with $a,b\in \mathbb{Q}^\times$. In this paper, we prove that for any odd integer $k\geq 1$, there exist infinitely many cube-free odd integers $n$ with exactly $k$ distinct prime factors such that $2n$ is a cube sum (resp. not a cube sum). Read More

2014Nov
Authors: D. Adikaram, D. Rimal, L. B. Weinstein, B. Raue, P. Khetarpal, R. P. Bennett, J. Arrington, W. K. Brooks, K. P. Adhikari, A. V. Afanasev, M. J. Amaryan, M. D. Anderson, J. Ball, M. Battaglieri, I. Bedlinskiy, A. S. Biselli, J. Bono, S. Boiarinov, W. J. Briscoe, V. D. Burkert, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, L. Colaneri, P. L. Cole, M. Contalbrigo, A. D'Angelo, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, G. E. Dodge, R. Dupre, H. Egiyan, A. El Alaoui, L. El Fassi, P. Eugenio, G. Fedotov, S. Fegan, A. Filippi, J. A. Fleming, A. Fradi, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, J. T. Goetz, W. Gohn, E. Golovatch, R. W. Gothe, K. A. Griffioen, M. Guidal, L. Guo, K. Hafidi, H. Hakobyan, N. Harrison, M. Hattawy, K. Hicks, M. Holtrop, S. M. Hughes, C. E. Hyde, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, D. Jenkins, H. Jiang, K. Joo, S. Joosten, M. Khandaker, W. Kim, A. Klein, F. J. Klein, S. Koirala, V. Kubarovsky, S. E. Kuhn, H. Y. Lu, I . J . D. MacGregor, N. Markov, M. Mayer, B. McKinnon, M. D. Mestayer, C. A. Meyer, M. Mirazita, V. Mokeev, R. A. Montgomery, C. I. Moody, H. Moutarde, A Movsisyan, C. Munoz Camacho, P. Nadel-Turonski, S. Niccolai, G. Niculescu, M. Osipenko, A. I. Ostrovidov, K. Park, E. Pasyuk, S. Pisano, O. Pogorelko, S. Procureur, Y. Prok, D. Protopopescu, A. J. R. Puckett, M. Ripani, A. Rizzo, G. Rosner, P. Rossi, F. Sabatié, D. Schott, R. A. Schumacher, Y. G. Sharabian, A. Simonyan, I. Skorodumina, E. S. Smith, G. D. Smith, D. I. Sober, N. Sparveris, S. Stepanyan, S. Strauch, V. Sytnik, M. Taiuti, Ye Tian, A. Trivedi, M. Ungaro, H. Voskanyan, E. Voutier, N. K. Walford, D. P. Watts, X. Wei, M. H. Wood, N. Zachariou, L. Zana, J. Zhang, Z. W. Zhao, I. Zonta, The CLAS Collaboration

There is a significant discrepancy between the values of the proton electric form factor, $G_E^p$, extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of $G_E^p$ from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. Read More

In this paper, based on an ideal of Tian, we establish a new sufficient condition for a positive integer to be a congruent number in terms of Legendre symbols of prime factors of the positive integer. Our criterion generalizes previous criterions of Heegner, and Birch--Stephens, Monsky, and Tian, and conjecturally provides a list of positive density of congruent numbers. Our method of proving our criterion is to give formulae for the analytic Tate--Shafarevich number in terms of the so-called genus periods and genus points. Read More

Epigenetic aberrations have profound effects on phenotypic output. Genome wide methylation alterations are inheritable to pass down the aberrations through multiple generations. We developed a statistical method, Genome-wide Identification of Significant Methylation Alteration, GISAIM, to study the significant transgenerational methylation changes. Read More

We give an explicit form of Gross-Zagier formula on Shimura Curves and an explicit form of Waldspurger formula. Read More

2014May
Authors: I. Bedlinskiy1, V. Kubarovsky2, S. Niccolai3, P. Stoler4, K. P. Adhikari5, M. D. Anderson6, S. Anefalos Pereira7, H. Avakian8, J. Ball9, N. A. Baltzell10, M. Battaglieri11, V. Batourine12, A. S. Biselli13, S. Boiarinov14, J. Bono15, W. J. Briscoe16, W. K. Brooks17, V. D. Burkert18, D. S. Carman19, A. Celentano20, S. Chandavar21, L. Colaneri22, P. L. Cole23, M. Contalbrigo24, O. Cortes25, V. Crede26, A. D'Angelo27, N. Dashyan28, R. De Vita29, E. De Sanctis30, A. Deur31, C. Djalali32, D. Doughty33, R. Dupre34, H. Egiyan35, A. El Alaoui36, L. El Fassi37, L. Elouadrhiri38, P. Eugenio39, G. Fedotov40, S. Fegan41, J. A. Fleming42, T. A. Forest43, B. Garillon44, M. Garçon45, G. Gavalian46, N. Gevorgyan47, Y. Ghandilyan48, G. P. Gilfoyle49, K. L. Giovanetti50, F. X. Girod51, E. Golovatch52, R. W. Gothe53, K. A. Griffioen54, B. Guegan55, L. Guo56, K. Hafidi57, H. Hakobyan58, N. Harrison59, M. Hattawy60, K. Hicks61, M. Holtrop62, D. G. Ireland63, B. S. Ishkhanov64, E. L. Isupov65, D. Jenkins66, H. S. Jo67, K. Joo68, D. Keller69, M. Khandaker70, A. Kim71, W. Kim72, A. Klein73, F. J. Klein74, S. Koirala75, S. E. Kuhn76, S. V. Kuleshov77, P. Lenisa78, W. I. Levine79, K. Livingston80, H. Y. Lu81, I . J . D. MacGregor82, N. Markov83, M. Mayer84, B. McKinnon85, M. Mirazita86, V. Mokeev87, R. A. Montgomery88, C. I. Moody89, H. Moutarde90, A Movsisyan91, C. Munoz Camacho92, P. Nadel-Turonski93, I. Niculescu94, M. Osipenko95, A. I. Ostrovidov96, L. L. Pappalardo97, K. Park98, S. Park99, E. Pasyuk100, E. Phelps101, W. Phelps102, J. J. Phillips103, S. Pisano104, O. Pogorelko105, J. W. Price106, Y. Prok107, D. Protopopescu108, S. Procureur109, A. J. R. Puckett110, B. A. Raue111, M. Ripani112, B. G. Ritchie113, A. Rizzo114, P. Rossi115, P. Roy116, F. Sabatié117, C. Salgado118, D. Schott119, R. A. Schumacher120, E. Seder121, I. Senderovich122, Y. G. Sharabian123, A. Simonyan124, G. D. Smith125, D. I. Sober126, D. Sokhan127, S. S. Stepanyan128, S. Strauch129, V. Sytnik130, W. Tang131, Ye Tian132, M. Ungaro133, A. V. Vlassov134, H. Voskanyan135, E. Voutier136, N. K. Walford137, D. Watts138, X. Wei139, L. B. Weinstein140, M. Yurov141, N. Zachariou142, L. Zana143, J. Zhang144, Z. W. Zhao145, I. Zonta146, for the CLAS Collaboration
Affiliations: 1Institute of Theoretical and Experimental Physics, 2Thomas Jefferson National Accelerator Facility, 3Institut de Physique Nucléaire ORSAY, 4Rensselaer Polytechnic Institute, 5Old Dominion University, 6University of Glasgow, 7INFN, 8Thomas Jefferson National Accelerator Facility, 9CEA, 10Argonne National Laboratory, 11INFN, 12Thomas Jefferson National Accelerator Facility, 13Thomas Jefferson National Accelerator Facility, 14Thomas Jefferson National Accelerator Facility, 15Florida International University, 16The George Washington University, 17Universidad Técnica Federico Santa María, 18Thomas Jefferson National Accelerator Facility, 19Thomas Jefferson National Accelerator Facility, 20INFN, 21Ohio University, 22INFN, 23Idaho State University, 24INFN, 25Idaho State University, 26Florida State University, 27INFN, 28Yerevan Physics Institute, 29INFN, 30INFN, 31Thomas Jefferson National Accelerator Facility, 32University of South Carolina, 33Christopher Newport University, 34Institut de Physique Nucléaire ORSAY, 35Thomas Jefferson National Accelerator Facility, 36Argonne National Laboratory, 37Old Dominion University, 38Thomas Jefferson National Accelerator Facility, 39Florida State University, 40University of South Carolina, 41INFN, 42Edinburgh University, 43Idaho State University, 44Institut de Physique Nucléaire ORSAY, 45CEA, 46Old Dominion University, 47Yerevan Physics Institute, 48Yerevan Physics Institute, 49University of Richmond, 50James Madison University, 51Thomas Jefferson National Accelerator Facility, 52Skobeltsyn Institute of Nuclear Physics, 53University of South Carolina, 54Institut de Physique Nucléaire ORSAY, 55Institut de Physique Nucléaire ORSAY, 56Florida International University, 57Argonne National Laboratory, 58Universidad Técnica Federico Santa María, 59University of Connecticut, 60Institut de Physique Nucléaire ORSAY, 61Ohio University, 62University of New Hampshire, 63University of Glasgow, 64Skobeltsyn Institute of Nuclear Physics, 65Skobeltsyn Institute of Nuclear Physics, 66Institut de Physique Nucléaire ORSAY, 67Institut de Physique Nucléaire ORSAY, 68University of Connecticut, 69University of Virginia, 70Idaho State University, 71University of Connecticut, 72Kyungpook National University, 73Old Dominion University, 74Catholic University of America, 75Old Dominion University, 76Old Dominion University, 77Universidad Técnica Federico Santa María, 78INFN, 79Carnegie Mellon University, 80University of Glasgow, 81University of South Carolina, 82University of Glasgow, 83University of Connecticut, 84Old Dominion University, 85University of Glasgow, 86INFN, 87Thomas Jefferson National Accelerator Facility, 88INFN, 89Argonne National Laboratory, 90CEA, 91INFN, 92Institut de Physique Nucléaire ORSAY, 93Thomas Jefferson National Accelerator Facility, 94James Madison University, 95INFN, 96Florida State University, 97INFN, 98Thomas Jefferson National Accelerator Facility, 99Florida State University, 100Thomas Jefferson National Accelerator Facility, 101University of South Carolina, 102Florida International University, 103University of Glasgow, 104INFN, 105Institute of Theoretical and Experimental Physics, 106California State University, 107Old Dominion University, 108University of Glasgow, 109CEA, 110University of Connecticut, 111Florida International University, 112INFN, 113Arizona State University, 114INFN, 115INFN, 116Florida State University, 117CEA, 118Norfolk State University, 119The George Washington University, 120Carnegie Mellon University, 121University of Connecticut, 122Arizona State University, 123Thomas Jefferson National Accelerator Facility, 124Yerevan Physics Institute, 125Edinburgh University, 126Catholic University of America, 127University of Glasgow, 128Kyungpook National University, 129University of South Carolina, 130Universidad Técnica Federico Santa María, 131Ohio University, 132University of South Carolina, 133Thomas Jefferson National Accelerator Facility, 134Institute of Theoretical and Experimental Physics, 135Yerevan Physics Institute, 136LPSC, 137Catholic University of America, 138University of Glasgow, 139Thomas Jefferson National Accelerator Facility, 140Old Dominion University, 141University of Virginia, 142University of South Carolina, 143Edinburgh University, 144Thomas Jefferson National Accelerator Facility, 145University of Virginia, 146INFN

Exclusive neutral-pion electroproduction ($ep\to e^\prime p^\prime \pi^0$) was measured at Jefferson Lab with a 5.75-GeV electron beam and the CLAS detector. Differential cross sections $d^4\sigma/dtdQ^2dx_Bd\phi_\pi$ and structure functions $\sigma_T+\epsilon\sigma_L, \sigma_{TT}$ and $\sigma_{LT}$ as functions of $t$ were obtained over a wide range of $Q^2$ and $x_B$. Read More

The BICEP2 experiment confirms the existence of primordial gravitational wave with the tensor-to-scalar ratio $r=0$ ruled out at $7\sigma$ level. The consistency of this large value of $r$ with the {\em Planck} data requires a large negative running $n'_s$ of the scalar spectral index. Herein we propose two types of the single field inflation models with simple potentials to study the possibility of the consistency of the models with the BICEP2 and {\em Planck} observations. Read More

In this paper, we show that Tian's induction method can be generalised to study the Birch-Swinnerton-Dyer conjecture for the quadratic twists, both with global root number $+1$ and with global root number $-1$, of certain elliptic curves $E$ defined over $\mathbb Q$. In particular, for the curve $E = X_0(49)$ we prove the following results. Let $q_1, \ldots, q_r$ be distinct primes which are congruent to $1$ modulo $4$ and inert in the field $F = \mathbb Q(\sqrt{-7})$, and let $E^{(R)}$ be the twist of $E$ by the quadratic extension $\mathbb Q(\sqrt{R})/\mathbb Q$, where $R=q_1\ldots q_r$. Read More

The paper by Alfons, Croux and Gelper (2013), Sparse least trimmed squares regression for analyzing high-dimensional large data sets, considered a combination of least trimmed squares (LTS) and lasso penalty for robust and sparse high-dimensional regression. In a recent paper [She and Owen (2011)], a method for outlier detection based on a sparsity penalty on the mean shift parameter was proposed (designated by "SO" in the following). This work is mentioned in Alfons et al. Read More

Modeling biological networks serves as both a major goal and an effective tool of systems biology in studying mechanisms that orchestrate the activities of gene products in cells. Biological networks are context specific and dynamic in nature. To systematically characterize the selectively activated regulatory components and mechanisms, the modeling tools must be able to effectively distinguish significant rewiring from random background fluctuations. Read More

This paper investigates the degrees of freedom (DoF) of the L-cluster, K-user MIMO multi-way relay channel, where users in each cluster wish to exchange messages within the cluster, and they can only communicate through the relay. A novel DoF upper bound is derived by providing users with carefully designed genie information. Achievable DoF is identified using signal space alignment and multiple-access transmission. Read More

2013Jun
Authors: M. Moteabbed, M. Niroula, B. A. Raue, L. B. Weinstein, D. Adikaram, J. Arrington, W. K. Brooks, J. Lachniet, Dipak Rimal, M. Ungaro, K. P. Adhikari, M. Aghasyan, M. J. Amaryan, S. Anefalos Pereira, H. Avakian, J. Ball, N. A. Baltzell, M. Battaglieri, V. Batourine, I. Bedlinskiy, R. P. Bennett, A. S. Biselli, J. Bono, S. Boiarinov, W. J. Briscoe, V. D. Burkert, D. S. Carman, A. Celentano, S. Chandavar, P. L. Cole, P. Collins, M. Contalbrigo, O. Cortes, V. Crede, A. D'Angelo, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, D. Doughty, R. Dupre, H. Egiyan, L. El Fassi, P. Eugenio, G. Fedotov, S. Fegan, R. Fersch, J. A. Fleming, N. Gevorgyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, J. T. Goetz, W. Gohn, E. Golovatch, R. W. Gothe, K. A. Griffioen, M. Guidal, N. Guler, L. Guo, K. Hafidi, H. Hakobyan, C. Hanretty, N. Harrison, D. Heddle, K. Hicks, D. Ho, M. Holtrop, C. E. Hyde, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, H. S. Jo, K. Joo, D. Keller, M. Khandaker, A. Kim, F. J. Klein, S. Koirala, A. Kubarovsky, V. Kubarovsky, S. E. Kuhn, S. V. Kuleshov, S. Lewis, H. Y. Lu, M. MacCormick, I . J . D. MacGregor, D. Martinez, M. Mayer, B. McKinnon, T. Mineeva, M. Mirazita, V. Mokeev, R. A. Montgomery, K. Moriya, H. Moutarde, E. Munevar, C. Munoz Camacho, P. Nadel-Turonski, R. Nasseripour, S. Niccolai, G. Niculescu, I. Niculescu, M. Osipenko, A. I. Ostrovidov, L. L. Pappalardo, R. Paremuzyan, K. Park, S. Park, E. Phelps, J. J. Phillips, S. Pisano, O. Pogorelko, S. Pozdniakov, J. W. Price, S. Procureur, D. Protopopescu, A. J. R. Puckett, M. Ripani, G. Rosner, P. Rossi, F. Sabatié, M. S. Saini, C. Salgado, D. Schott, R. A. Schumacher, E. Seder, H. Seraydaryan, Y. G. Sharabian, E. S. Smith, G. D. Smith, D. I. Sober, D. Sokhan, S. Stepanyan, S. Strauch, W. Tang, C. E. Taylor, Ye Tian, S. Tkachenko, H. Voskanyan, E. Voutier, N. K. Walford, M. H. Wood, N. Zachariou, L. Zana, J. Zhang, Z. W. Zhao, I. Zonta

The discrepancy between proton electromagnetic form factors extracted using unpolarized and polarized scattering data is believed to be a consequence of two-photon exchange (TPE) effects. However, the calculations of TPE corrections have significant model dependence, and there is limited direct experimental evidence for such corrections. We present the results of a new experimental technique for making direct $e^\pm p$ comparisons, which has the potential to make precise measurements over a broad range in $Q^2$ and scattering angles. Read More

Channel state information (CSI) at the transmitters (CSIT) is of importance for interference alignment schemes to achieve the optimal degrees of freedom (DoF) for wireless networks. This paper investigates the impact of half-duplex relays on the degrees of freedom (DoF) of the X channel and the interference channel when the transmitters are blind in the sense that no ISIT is available. In particular, it is shown that adding relay nodes with global CSI to the communication model is sufficient to recover the DoF that is the optimal for these models with global CSI at the transmitters. Read More

2013Feb
Authors: C. S. Nepali, M. Amaryan, K. P. Adhikari, M. Aghasyan, S. Anefalos Pereira, H. Baghdasaryan, J. Ball, M. Battaglieri, V. Batourine, I. Bedlinskiy, A. S. Biselli, J. Bono, S. Boiarinov, W. J. Briscoe, S. Bültmann, V. D. Burkert, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, P. L. Cole, P. Collins, M. Contalbrigo, V. Crede, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, D. Doughty, R. Dupre, A. El Alaoui, L. El Fassi, G. Fedotov, S. Fegan, R. Fersch, J. A. Fleming, M. Y. Gabrielyan, N. Gevorgyan, K. L. Giovanetti, F. X. Girod, D. I. Glazier, J. T. Goetz, W. Gohn, E. Golovatch, R. W. Gothe, K. A. Griffioen, M. Guidal, N. Guler, K. Hafidi, H. Hakobyan, C. Hanretty, N. Harrison, D. Heddle, K. Hicks, D. Ho, M. Holtrop, C. E. Hyde, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, H. S. Jo, D. Keller, M. Khandaker, P. Khetarpal, A. Kim, W. Kim, A. Klein, F. J. Klein, S. Koirala, V. Kubarovsky, S. E. Kuhn, S. V. Kuleshov, N. D. Kvaltine, H. Y. Lu, I . J . D. MacGregor, N. Markov, M. Mayer, B. McKinnon, T. Mineeva, M. Mirazita, V. Mokeev, R. A. Montgomery, E. Munevar, C. Munoz Camacho, P. Nadel-Turonski, S. Niccolai, G. Niculescu, I. Niculescu, M. Osipenko, A. I. Ostrovidov, L. L. Pappalardo, R. Paremuzyan, K. Park, S. Park, E. Pasyuk, E. Phelps, J. J. Phillips, S. Pisano, O. Pogorelko, S. Pozdniakov, J. W. Price, S. Procureur, D. Protopopescu, A. J. R. Puckett, B. A. Raue, D. Rimal, M. Ripani, B. G. Ritchie, G. Rosner, P. Rossi, F. Sabatié, M. S. Saini, C. Salgado, D. Schott, R. A. Schumacher, E. Seder, H. Seraydaryan, Y. G. Sharabian, G. D. Smith, D. I. Sober, D. Sokhan, S. S. Stepanyan, S. Stepanyan, I. I. Strakovsky, S. Strauch, M. Taiuti, W. Tang, C. E. Taylor, Ye Tian, S. Tkachenko, B. Torayev, B. Vernarsky, A. V. Vlassov, H. Voskanyan, E. Voutier, N. K. Walford, D. P. Watts, L. B. Weinstein, D. P. Weygand, N. Zachariou, L. Zana, J. Zhang, Z. W. Zhao, I. Zonta, J. Zhang

Experimental results on the $\Sigma^+(1189)$ hyperon transverse polarization in photoproduction on a hydrogen target using the CLAS detector at Jefferson laboratory are presented. The $\Sigma^+(1189)$ was reconstructed in the exclusive reaction $\gamma+p\rightarrow K^{0}_{S} + \Sigma^+(1189)$ via the $\Sigma^{+} \to p \pi^{0}$ decay mode. The $K^{0}_S$ was reconstructed in the invariant mass of two oppositely charged pions with the $\pi^0$ identified in the missing mass of the detected $p\pi^+\pi^-$ final state. Read More

Mohammed Ben Alhocain, in an Arab manuscript of the tenth century, stated that the principal object of the theory of rational right triangles is to find a square which when increased or diminished by a certain number $m$ becomes a square (see Dickson). In modern language, this object is to find a rational point of infinite order on the elliptic curve $my^2=x^3-x$. Heegner constructed (see also Monsky) such rational points in the case that $m$ are primes congruent to 5, 7 modulo 8 or twice primes congruent to 6 modulo 8. Read More

2012Jun
Authors: CLAS Collaboration, I. Bedlinskiy, V. Kubarovsky, S. Niccolai, P. Stoler, K. P. Adhikari, M. Aghasyan, M. J. Amaryan, M. Anghinolfi, H. Avakian, H. Baghdasaryan, J. Ball, N. A. Baltzell, M. Battaglieri, R. P. Bennett, A. S. Biselli, C. Bookwalter, S. Boiarinov, W. J. Briscoe, W. K. Brooks, V. D. Burkert, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, M. Contalbrigo, V. Crede, A. D'Angelo, A. Daniel, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, D. Doughty, R. Dupre, H. Egiyan, A. El Alaoui, L. El Fassi, L. Elouadrhiri, P. Eugenio, G. Fedotov, S. Fegan, J. A. Fleming, T. A. Forest, M. Garçon, N. Gevorgyan, K. L. Giovanetti, F. X. Girod, W. Gohn, R. W. Gothe, L. Graham, K. A. Griffioen, B. Guegan, M. Guidal, L. Guo, K. Hafidi, H. Hakobyan, C. Hanretty, D. Heddle, K. Hicks, M. Holtrop, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, H. S. Jo, K. Joo, D. Keller, M. Khandaker, P. Khetarpal, A. Kim, W. Kim, F. J. Klein, S. Koirala, A. Kubarovsky, S. E. Kuhn, S. V. Kuleshov, N. D. Kvaltine, K. Livingston, H. Y. Lu, I. J. D. MacGregor, Y. Mao, N. Markov, D. Martinez, M. Mayer, B. McKinnon, C. A. Meyer, T. Mineeva, M. Mirazita, V. Mokeev, H. Moutarde, E. Munevar, C. Munoz Camacho, P. Nadel-Turonski, G. Niculescu, I. Niculescu, M. Osipenko, A. I. Ostrovidov, L. L. Pappalardo, R. Paremuzyan, K. Park, S. Park, E. Pasyuk, S. Anefalos Pereira, E. Phelps, S. Pisano, O. Pogorelko, S. Pozdniakov, J. W. Price, S. Procureur, Y. Prok, D. Protopopescu, A. J. R. Puckett, B. A. Raue, G. Ricco, D. Rimal, M. Ripani, G. Rosner, P. Rossi, F. Sabatié, M. S. Saini, C. Salgado, N. Saylor, D. Schott, R. A. Schumacher, E. Seder, H. Seraydaryan, Y. G. Sharabian, G. D. Smith, D. I. Sober, D. Sokhan, S. S. Stepanyan, S. Stepanyan, S. Strauch, M. Taiuti, W. Tang, C. E. Taylor, Ye Tian, S. Tkachenko, M. Ungaro, M. F. Vineyard, A. Vlassov, H. Voskanyan, E. Voutier, N. K. Walford, D. P. Watts, L. B. Weinstein, D. P. Weygand, M. H. Wood, N. Zachariou, J. Zhang, Z. W. Zhao, I. Zonta

Exclusive $\pi^0$ electroproduction at a beam energy of 5.75 GeV has been measured with the Jefferson Lab CLAS spectrometer. Differential cross sections were measured at more than 1800 kinematic values in $Q^2$, $x_B$, $t$, and $\phi_\pi$, in the $Q^2$ range from 1. Read More

2012Jun
Authors: K. Park, M. Guidal, R. W. Gothe, J. M. Laget, M. Garçon, K. P. Adhikari, M. Aghasyan, M. J. Amaryan, M. Anghinolfi, H. Avakian, H. Baghdasaryan, J. Ball, N. A. Baltzell, M. Battaglieri, I. Bedlinsky, R. P. Bennett, A. S. Biselli, C. Bookwalter, S. Boiarinov, W. J. Briscoe, W. K. Brooks, V. D. Burkert, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, M. Contalbrigo, V. Crede, A. D'Angelo, A. Daniel, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, G. E. Dodge, D. Doughty, R. Dupre, H. Egiyan, A. El Alaoui, L. El Fassi, A. Fradi, P. Eugenio, G. Fedotov, S. Fegan, J. A. Fleming, T. A. Forest, N. Gevorgyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, W. Gohn, E. Golovatch, L. Graham, K. A. Griffioen, B. Guegan, L. Guo, K. Hafidi, H. Hakobyan, C. Hanretty, D. Heddle, K. Hicks, D. Ho, M. Holtrop, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, D. Jenkins, H. S. Jo, D. Keller, M. Khandaker, P. Khetarpal, A. Kim, W. Kim, F. J. Klein, S. Koirala, A. Kubarovsky, V. Kubarovsky, S. E. Kuhn, S. V. Kuleshov, K. Livingston, H. Y. Lu, I. J. D. MacGregor, Y. Mao, N. Markov, D. Martinez, M. Mayer, B. McKinnon, C. A. Meyer, T. Mineeva, M. Mirazita, V. Mokeev, H. Moutarde, E. Munevar, C. Munoz Camacho, P. Nadel-Turonski, C. S. Nepali, S. Niccolai, G. Niculescu, I. Niculescu, M. Osipenko, A. I. Ostrovidov, L. L. Pappalardo, R. Paremuzyan, S. Park, E. Pasyuk, S. Anefalos Pereira, E. Phelps, S. Pisano, O. Pogorelko, S. Pozdniakov, J. W. Price, S. Procureur, D. Protopopescu, A. J. R. Puckett, B. A. Raue, G. Ricco, D. Rimal, M. Ripani, G. Rosner, P. Rossi, F. Sabatie, M. S. Saini, C. Salgado, D. Schott, R. A. Schumacher, E. Seder, H. Seraydaryan, Y. G. Sharabian, E. S. Smith, G. D. Smith, D. I. Sober, D. Sokhan, S. S. Stepanyan, P. Stoler, I. I. Strakovsky, S. Strauch, M. Taiuti, W. Tang, C. E. Taylor, Ye Tian, S. Tkachenko, A. Trivedi, M. Ungaro, B . Vernarsky, H. Voskanyan, E. Voutier, N. K. Walford, D. P. Watts, L. B. Weinstein, D. P. Weygand, M. H. Wood, N. Zachariou, J. Zhang, Z. W. Zhao, I. Zonta

The exclusive electroproduction of $\pi^+$ above the resonance region was studied using the $\rm{CEBAF}$ Large Acceptance Spectrometer ($\rm{CLAS}$) at Jefferson Laboratory by scattering a 6 GeV continuous electron beam off a hydrogen target. The large acceptance and good resolution of $\rm{CLAS}$, together with the high luminosity, allowed us to measure the cross section for the $\gamma^* p \to n \pi^+$ process in 140 ($Q^2$, $x_B$, $t$) bins: $0.16Read More

This work considers relay assisted transmission for multiuser networks when the relay has no access to the codebooks used by the transmitters. The relay is called oblivious for this reason. Of particular interest is the generalized compress-and-forward (GCF) strategy, where the destinations jointly decode the compression indices and the transmitted messages, and their optimality in this setting. Read More

2012Jan
Authors: Kijun Park, Ralf Gothe, Krishna Adhikari, Dasuni Adikaram-Mudiyanselage, Marco Anghinolfi, Hovhannes Baghdasaryan, Jacques Ball, Marco Battaglieri, Vitaly Baturin, Ivan Bedlinskiy, Robert Bennett, Angela Biselli, Craig Bookwalter, Sergey Boyarinov, Derek Branford, William Briscoe, William Brooks, Volker Burkert, Daniel Carman, Andrea Celentano, Shloka Chandavar, Gabriel Charles, Philip Cole, Marco Contalbrigo, Volker Crede, Annalisa D'Angelo, Aji Daniel, Natalya Dashyan, Raffaella De Vita, Enzo De Sanctis, Alexandre Deur, Chaden Djalali, David Doughty, Raphael Dupre, Ahmed El Alaoui, Lamiaa Elfassi, Paul Eugenio, Gleb Fedotov, Ahmed Fradi, Marianna Gabrielyan, Nerses Gevorgyan, Gerard Gilfoyle, Kevin Giovanetti, Francois-Xavier Girod, John Goetz, Wesley Gohn, Evgeny Golovach, Lewis Graham, Keith Griffioen, Michel Guidal, Lei Guo, Kawtar Hafidi, Hayk Hakobyan, Charles Hanretty, David Heddle, Kenneth Hicks, Maurik Holtrop, Yordanka Ilieva, David Ireland, Boris Ishkhanov, Evgeny Isupov, David Jenkins, Hyon-Suk Jo, Kyungseon Joo, Mahbubul Khandaker, Puneet Khetarpal, Andrey Kim, Wooyoung Kim, Andreas Klein, Franz Klein, A. Kubarovsky, Valery Kubarovsky, Sebastian Kuhn, Sergey Kuleshov, Nicholas Kvaltine, Kenneth Livingston, Haiyun Lu, Ian MacGregor, Nikolai Markov, Michael Mayer, Bryan McKinnon, Mac Mestayer, Curtis Meyer, Taisiya Mineeva, Marco Mirazita, Viktor Mokeev, Herve Moutarde, Edwin Munevar Espitia, Pawel Nadel-Turonski, Rakhsha Nasseripour, Silvia Niccolai, Gabriel Niculescu, Maria-Ioana Niculescu, Mikhail Osipenko, Alexander Ostrovidov, Michael Paolone, Luciano Pappalardo, Rafayel Paremuzyan, Seungkyung Park, Sergio Pereira, Evan Phelps, Silvia Pisano, Oleg Pogorelko, Sergey Pozdnyakov, John Price, Sebastien Procureur, Yelena Prok, Giovanni Ricco, Dipak Rimal, Marco Ripani, Barry Ritchie, Guenther Rosner, Patrizia Rossi, Franck Sabatie, Mukesh Saini, Carlos Salgado, Diane Schott, Reinhard Schumacher, Heghine Seraydaryan, Youri Sharabian, Elton Smith, Gregory Smith, Daniel Sober, Daria Sokhan, Samuel Stepanyan, Stepan Stepanyan, Paul Stoler, Igor Strakovski, Steffen Strauch, Mauro Taiuti, Wei Tang, Charles Taylor, Ye Tian, Svyatoslav Tkachenko, Arjun Trivedi, Maurizio Ungaro, Brian Vernarsky, Alexander Vlasov, Eric Voutier, Daniel Watts, Dennis Weygand, Michael Wood, Nicholas Zachariou, Bo Zhao, Zhiwen Zhao, N. Kalantarians, C. E. Hyde

We report the first extraction of the pion-nucleon multipoles near the production threshold for the $n\pi^+$ channel at relatively high momentum transfer ($Q^2$ up to 4.2 $\rm{GeV^2}$). The dominance of the s-wave transverse multipole ($E_{0+}$), expected in this region, allowed us to access the generalized form factor $G_1$ within the light-cone sum rule (LCSR) framework as well as the axial form factor $G_A$. Read More

We consider the Gaussian interference channel with an intermediate relay as a main building block for cooperative interference networks. On the achievability side, we consider compress-and-forward based strategies. Specifically, a generalized compress-and-forward strategy, where the destinations jointly decode the compression indices and the source messages, is shown to improve upon the compress-and-forward strategy which sequentially decodes the compression indices and source messages, and the recently proposed generalized hash-and-forward strategy. Read More

Quantum phase diffusion in a small underdamped Nb/AlO$_x$/Nb junction ($\sim$ 0.4 $\mu$m$^2$) is demonstrated in a wide temperature range of 25-140 mK where macroscopic quantum tunneling (MQT) is the dominant escape mechanism. We propose a two-step transition model to describe the switching process in which the escape rate out of the potential well and the transition rate from phase diffusion to the running state are considered. Read More

This work studies the Gaussian interference channel (IC) with a relay, which transmits and receives in a band that is orthogonal to the IC. The channel associated with the relay is thus an out-of-band relay channel (OBRC). The focus is on a symmetric channel model, in order to assess the fundamental impact of the OBRC on the signal interaction of the IC, in the simplest possible setting. Read More

The properties of phase escape in a dc SQUID at 25 mK, which is well below quantum-to-classical crossover temperature $T_{cr}$, in the presence of strong resonant ac driving have been investigated. The SQUID contains two Nb/Al-AlO$_{x} $/Nb tunnel junctions with Josephson inductance much larger than the loop inductance so it can be viewed as a single junction having adjustable critical current. We find that with increasing microwave power $W$ and at certain frequencies $\nu $ and $\nu $/2, the single primary peak in the switching current distribution, \textrm{which is the result of macroscopic quantum tunneling of the phase across the junction}, first shifts toward lower bias current $I$ and then a resonant peak develops. Read More

Over a non-archimedean local field of characteristic zero, we prove the multiplicity preservation for orthogonal-symplectic dual pair correspondences and unitary dual pair correspondences. Read More

Let p be a prime number, F a totally real field such that [F(mu_p): F]=2 and [F:Q] is odd. For delta \in F^times, let [delta] denote its class in F^times/F^{times p}. In this paper, we show Main Theorem. Read More