Yasuo Doi - The University of Tokyo, Japan

Yasuo Doi
Are you Yasuo Doi?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Yasuo Doi
Affiliation
The University of Tokyo, Japan
City
Bunkyō-ku
Country
Japan

Pubs By Year

Pub Categories

 
Astrophysics (7)
 
Astrophysics of Galaxies (5)
 
Instrumentation and Methods for Astrophysics (5)
 
Cosmology and Nongalactic Astrophysics (2)
 
Earth and Planetary Astrophysics (1)

Publications Authored By Yasuo Doi

2017Apr
Authors: Derek Ward-Thompson, Kate Pattle, Pierre Bastien, Ray S. Furuya, Woojin Kwon, Shih-Ping Lai, Keping Qiu, David Berry, Minho Choi, Simon Coudé, James Di Francesco, Thiem Hoang, Erica Franzmann, Per Friberg, Sarah F. Graves, Jane S. Greaves, Martin Houde, Doug Johnstone, Jason M. Kirk, Patrick M. Koch, Jungmi Kwon, Chang Won Lee, Di Li, Brenda C. Matthews, Joseph C. Mottram, Harriet Parsons, Andy Pon, Ramprasad Rao, Mark Rawlings, Hiroko Shinnaga, Sarah Sadavoy, Sven van Loo, Yusuke Aso, Do-Young Byun, Eswariah Chakali, Huei-Ru Chen, Mike C. -Y. Chen, Wen Ping Chen, Tao-Chung Ching, Jungyeon Cho, Antonio Chrysostomou, Eun Jung Chung, Yasuo Doi, Emily Drabek-Maunder, Stewart P. S. Eyres, Jason Fiege, Rachel K. Friesen, Gary Fuller, Tim Gledhill, Matt J. Griffin, Qilao Gu, Tetsuo Hasegawa, Jennifer Hatchell, Saeko S. Hayashi, Wayne Holland, Tsuyoshi Inoue, Shu-ichiro Inutsuka, Kazunari Iwasaki, Il-Gyo Jeong, Ji-hyun Kang, Miju Kang, Sung-ju Kang, Koji S. Kawabata, Francisca Kemper, Gwanjeong Kim, Jongsoo Kim, Kee-Tae Kim, Kyoung Hee Kim, Mi-Ryang Kim, Shinyoung Kim, Kevin M. Lacaille, Jeong-Eun Lee, Sang-Sung Lee, Dalei Li, Hua-bai Li, Hong-Li Liu, Junhao Liu, Sheng-Yuan Liu, Tie Liu, A-Ran Lyo, Steve Mairs, Masafumi Matsumura, Gerald H. Moriarty-Schieven, Fumitaka Nakamura, Hiroyuki Nakanishi, Nagayoshi Ohashi, Takashi Onaka, Nicolas Peretto, Tae-Soo Pyo, Lei Qian, Brendan Retter, John Richer, Andrew Rigby, Jean-François Robitaille, Giorgio Savini, Anna M. M. Scaife, Archana Soam, Motohide Tamura, Ya-Wen Tang, Kohji Tomisaka, Hongchi Wang, Jia-Wei Wang, Anthony P. Whitworth, Hsi-Wei Yen, Hyunju Yoo, Jinghua Yuan, Chuan-Peng Zhang, Guoyin Zhang, Jianjun Zhou, Lei Zhu, Philippe André, C. Darren Dowell, Sam Falle, Yusuke Tsukamoto

We present the first results from the B-fields In STar-forming Region Observations (BISTRO) survey, using the Sub-millimetre Common-User Bolometer Array 2 (SCUBA-2) camera, with its associated polarimeter (POL-2), on the James Clerk Maxwell Telescope (JCMT) in Hawaii. We discuss the survey's aims and objectives. We describe the rationale behind the survey, and the questions which the survey will aim to answer. Read More

Zodiacal emission is thermal emission from interplanetary dust. Its contribution to the sky brightness is non-negligible in the region near the ecliptic plane, even in the far-infrared (far-IR) wavelength regime. We analyse zodiacal emission observed by the AKARI far-IR all-sky survey, which covers 97% of the entire sky at arcminute-scale resolution in four photometric bands, with central wavelengths of 65, 90, 140, and 160 $\mu$m. Read More

We perform image stacking analysis of Sloan Digital Sky Survey (SDSS) photometric galaxies over the AKARI Far-Infrared Surveyor (FIS) maps at 65{\mu}m, 90{\mu}m, and 140{\mu}m. The resulting image profiles are decomposed into the central galaxy component (single term) and the nearby galaxy component (clustering term), as a function of the r-band magnitude, m_r of the central galaxy. We find that the mean far-infrared (FIR) flux of a galaxy with magnitude m_r is well fitted with f^s_{90{\mu}m}=13*10^{0. Read More

In the evolutionary path of interstellar medium inquiry, many new species of interstellar dust have been modeled and discovered. The modes by which these species interact and evolve are beginning to be understood, but in recent years a peculiar new feature has appeared in microwave surveys. Anomalous microwave emission (AME), appearing between 10 and 90 GHz, has been correlated with thermal dust emission, leading to the popular suggestion that this anomaly is electric dipole emission from spinning dust. Read More

We present a far-infrared all-sky atlas from a sensitive all-sky survey using the Japanese $AKARI$ satellite. The survey covers $> 99$% of the sky in four photometric bands centred at 65 $\mu$m, 90 $\mu$m, 140 $\mu$m, and 160 $\mu$m with spatial resolutions ranging from 1 to 1.5 arcmin. Read More

We present an initial analysis of the properties of the all-sky image obtained by the Far-Infrared Surveyor (FIS) onboard the AKARI satellite, at 65~$\mu$m (N60), 90~$\mu$m (WIDE-S), 140~$\mu$m (WIDE-L),and 160~$\mu$m (N160). Absolute flux calibration was determined by comparing the data with the COBE/DIRBE data sets, and the intensity range was as wide as from a few MJy~sr$^{-1}$ to $>$1~GJy~sr$^{-1}$. The uncertainties are considered to be the standard deviations with respect to the DIRBE data, and they are less than 10\% for intensities above 10, 3, 25, and 26~MJy~sr$^{-1}$ at the N60, WIDE-S, WIDE-L, and N160 bands, respectively. Read More

Investigations of the point spread functions (PSFs) and flux calibrations for stacking analysis have been performed with the far-infrared (wavelengths range of 60 to 140 um all-sky maps taken by the Far-Infrared Surveyor (FIS) onboard the AKARI satellite. The PSFs are investigated by stacking the maps at the positions of standard stars with their fluxes of 0.02 -10 Jy. Read More

Far-infrared observations provide crucial data for the investigation and characterisation of the properties of dusty material in the Interstellar Medium (ISM), since most of its energy is emitted between ~100 and 200 um. We present the first all-sky image from a sensitive all-sky survey using the Japanese AKARI satellite, in the wavelength range 50 -- 180 um. Covering >99% of the sky in four photometric bands with four filters centred at 65 um, 90 um, 140 um, and 160 um wavelengths, this achieved spatial resolutions from 1 to 2 arcmin and a detection limit of <10 MJy sr-1, with absolute and relative photometric accuracies of <20%. Read More

The Far-Infrared Surveyor (FIS) onboard the AKARI satellite has a spectroscopic capability provided by a Fourier transform spectrometer (FIS-FTS). FIS-FTS is the first space-borne imaging FTS dedicated to far-infrared astronomical observations. We describe the calibration process of the FIS-FTS and discuss its accuracy and reliability. Read More

We present the characterization and calibration of the Slow-Scan observation mode of the Far-Infrared Surveyor (FIS) onboard the AKARI satellite. The FIS, one of the two focal-plane instruments on AKARI, has four photometric bands between 50--180 um with two types of Ge:Ga array detectors. In addition to the All-Sky Survey, FIS has also taken detailed far-infrared images of selected targets by using the Slow-Scan mode. Read More

2008Nov
Affiliations: 1Nagoya University, Japan, 2Gunma Astronomical Observatory, Japan, 3Nagoya University, Japan, 4National Astronomical Observatory of Japan, 5Institute of Space and Astronautical Science, JAXA, Japan, 6Institute of Space and Astronautical Science, JAXA, Japan, 7Institute of Space and Astronautical Science, JAXA, Japan, 8Institute of Space and Astronautical Science, JAXA, Japan, 9The University of Tokyo, Japan, 10Institute of Space and Astronautical Science, JAXA, Japan, 11Institute of Space and Astronautical Science, JAXA, Japan, 12Institute of Space and Astronautical Science, JAXA, Japan, 13Nagoya University, Japan
Category: Astrophysics

We have developed an imaging Fourier transform spectrometer (FTS) for space-based far-infrared astronomical observations. The FTS employs a newly developed photoconductive detector arrays with a capacitive trans-impedance amplifier, which makes the FTS a completely unique instrument. The FTS was installed as a function of the far-infrared instrument (FIS: Far-Infrared Surveyor) on the Japanese astronomical satellite, AKARI, which was launched on February 21, 2006 (UT) from the Uchinoura Space Center. Read More

We present the observations of the reflection nebulae IC4954 and IC4955 region with the Infrared Camera (IRC) and the Far-Infrared Surveyor (FIS) on board the infrared astronomical satellite AKARI during its performance verification phase. We obtained 7 band images from 7 to 160um with higher spatial resolution and higher sensitivities than previous observations. The mid-infrared color of the S9W (9um) and L18W (18um) bands shows a systematic variation around the exciting sources. Read More

We present the spatially resolved observations of IRAS sources from the Japanese infrared astronomy satellite AKARI All-Sky Survey during the performance verification (PV) phase of the mission. We extracted reliable point sources matched with IRAS point source catalogue. By comparing IRAS and AKARI fluxes, we found that the flux measurements of some IRAS sources could have been over or underestimated and affected by the local background rather than the global background. Read More

We report initial results of far-infrared observations of the Lockman hole with Far-Infrared Surveyor (FIS) onboard the AKARI infrared satellite. On the basis of slow scan observations of a 0.6 deg x 1. Read More

We present results of our survey observations of the [C II] 158 micron line emission from the Galactic plane using the Balloon-borne Infrared Carbon Explorer (BICE). Our survey covers a wide area (350 deg < l < 25 deg, |b| < 3 deg) with a spatial resolution of 15'. We employed a new observing method called the ``fast spectral scanning'' to make large-scale observations efficiently. Read More

1995Oct
Affiliations: 1The Institute of Space and Astronautical Science, 2The Institute of Space and Astronautical Science, 3The Institute of Space and Astronautical Science, 4The Institute of Space and Astronautical Science, 5The Institute of Space and Astronautical Science, 6The Institute of Space and Astronautical Science, 7Steward Observatory, University of Arizona, 8Steward Observatory, University of Arizona
Category: Astrophysics

We have observed the [CII] 158 micron line emission from the Galactic plane (-10 deg < l < 25 deg, |b| <= 3 deg) with the Balloon-borne Infrared Carbon Explorer (BICE). The observed longitudinal distribution of the [CII] line emission is clearly different from that of the far-infrared continuum emission; the Galactic center is not the dominant peak in the [CII] emission. Indeed, the ratio of the [CII] line emission to far-infrared continuum (I_[CII] / I_FIR) is systematically low within the central several hundred parsecs of the Galaxy. Read More