Y. Zhou - for the ALICE Collaboration

Y. Zhou
Are you Y. Zhou?

Claim your profile, edit publications, add additional information:

Contact Details

Y. Zhou
for the ALICE Collaboration

Pubs By Year

External Links

Pub Categories

Physics - Mesoscopic Systems and Quantum Hall Effect (9)
Computer Science - Computer Vision and Pattern Recognition (6)
Quantum Physics (4)
Mathematics - Analysis of PDEs (4)
Physics - Materials Science (4)
High Energy Physics - Phenomenology (3)
Physics - Superconductivity (3)
Nuclear Experiment (3)
Computer Science - Learning (3)
Physics - Instrumentation and Detectors (2)
High Energy Physics - Experiment (2)
High Energy Physics - Theory (2)
Mathematics - Numerical Analysis (2)
Physics - Optics (2)
Physics - Strongly Correlated Electrons (2)
Statistics - Computation (2)
Computer Science - Cryptography and Security (2)
Computer Science - Human-Computer Interaction (2)
Statistics - Machine Learning (2)
Instrumentation and Methods for Astrophysics (2)
Nonlinear Sciences - Chaotic Dynamics (1)
Mathematics - Mathematical Physics (1)
Computer Science - Artificial Intelligence (1)
Computer Science - Computers and Society (1)
Mathematical Physics (1)
Mathematics - Optimization and Control (1)
Mathematics - Probability (1)
Mathematics - Information Theory (1)
Solar and Stellar Astrophysics (1)
Earth and Planetary Astrophysics (1)
Computer Science - Distributed; Parallel; and Cluster Computing (1)
Mathematics - Combinatorics (1)
Nuclear Theory (1)
Computer Science - Information Theory (1)
Physics - Statistical Mechanics (1)

Publications Authored By Y. Zhou

It has been well demonstrated that adversarial examples, i.e., natural images with visually imperceptible perturbations added, generally exist for deep networks to fail on image classification. Read More

An intriguing feature of the magnetic skyrmion in a frustrated magnetic system is its helicity-orbital coupling. When the magnetic dipole-dipole interaction (DDI) is neglected, a skyrmion can show a current-induced rotational motion together with a helicity rotation since the energy is independent of the helicity. Here, we explore the skyrmion dynamics in a frustrated magnetic system based on the $J_{1}$-$J_{2}$-$J_{3}$ classical Heisenberg model explicitly by including the DDI. Read More

The large-amplitude longitudinal oscillations of solar filaments have been observed and explored for more than ten years. Previous studies are mainly based on the one-dimensional rigid flux tube model with a single magnetic dip. However, it is noticed that there might be two magnetic dips, and hence two threads, along one magnetic field line. Read More

In this work we introduce a conditional accelerated lazy stochastic gradient descent algorithm with optimal number of calls to a stochastic first-order oracle and convergence rate $O\left(\frac{1}{\varepsilon^2}\right)$ improving over the projection-free, Online Frank-Wolfe based stochastic gradient descent of Hazan and Kale [2012] with convergence rate $O\left(\frac{1}{\varepsilon^4}\right)$. Read More

Data deduplication is able to effectively identify and eliminate redundant data and only maintain a single copy of files and chunks. Hence, it is widely used in cloud storage systems to save storage space and network bandwidth. However, the occurrence of deduplication can be easily identified by monitoring and analyzing network traffic, which leads to the risk of user privacy leakage. Read More

In this article we develop a new sequential Monte Carlo (SMC) method for multilevel (ML) Monte Carlo estimation. In particular, the method can be used to estimate expectations with respect to a target probability distribution over an infinite-dimensional and non-compact space as given, for example, by a Bayesian inverse problem with Gaussian random field prior. Under suitable assumptions the MLSMC method has the optimal $O(\epsilon^{-2})$ bound on the cost to obtain a mean-square error of $O(\epsilon^2)$. Read More

Interaction-free measurement (IFM), just as its name implies, can enable one to detect an object without interacting with it, i.e., substantially reducing the damage to the object. Read More

Monolayer films of FeSe grown on SrTiO$_3$ substrates exhibit significantly higher superconducting transition temperatures than those of bulk FeSe. Interaction of electrons in the FeSe layer with dipolar SrTiO$_3$ phonons has been suggested as the cause of the enhanced transition temperature. In this paper we systematically study the coupling of SrTiO$_3$ longitudinal optical phonons to the FeSe electron, including also electron-electron Coulomb interactions at the random phase approximation level. Read More

In this work, we present a method for targeted, maskless, and scalable fabrication of single silicon vacancy (VSi) defect arrays in silicon carbide (SiC) using focused ion beam. The resolution of implanted VSi defects is limited to a few tens of nanometers, defined by the diameter of the ion beam. Firstly, we studied the photoluminescence (PL) spectrum and optically detected magnetic resonance (ODMR) of the generated defect spin ensemble, confirming that the synthesized centers were in the desired defect state. Read More

A novel and simple superbunching pseudothermal light source is introduced based on common instruments such as laser, lens, pinhole and groundglass. $g^{(2)}(0)=3.66 \pm 0. Read More

Authors: BESIII collaboration, M. Ablikim, M. N. Achasov, S. Ahmed, M. Albrecht, A. Amoroso, F. F. An, Q. An, J. Z. Bai, O. Bakina, R. Baldini Ferroli, Y. Ban, D. W. Bennett, J. V. Bennett, N. Berger, M. Bertani, D. Bettoni, J. M. Bian, F. Bianchi, E. Boger, I. Boyko, R. A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G. F. Cao, S. A. Cetin, J. Chai, J. F. Chang, G. Chelkov, G. Chen, H. S. Chen, J. C. Chen, M. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, X. K. Chu, G. Cibinetto, H. L. Dai, J. P. Dai, A. Dbeyssi, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, O. Dorjkhaidav, Z. L. Dou, S. X. Du, P. F. Duan, J. Fang, S. S. Fang, X. Fang, Y. Fang, R. Farinelli, L. Fava, S. Fegan, F. Feldbauer, G. Felici, C. Q. Feng, E. Fioravanti, M. Fritsch, C. D. Fu, Q. Gao, X. L. Gao, Y. Gao, Y. G. Gao, Z. Gao, I. Garzia, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, M. H. Gu, S. Gu, Y. T. Gu, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, Z. Haddadi, S. Han, X. Q. Hao, F. A. Harris, K. L. He, X. Q. He, F. H. Heinsius, T. Held, Y. K. Heng, T. Holtmann, Z. L. Hou, C. Hu, H. M. Hu, T. Hu, Y. Hu, G. S. Huang, J. S. Huang, X. T. Huang, X. Z. Huang, Z. L. Huang, T. Hussain, W. Ikegami Andersson, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, X. S. Jiang, X. Y. Jiang, J. B. Jiao, Z. Jiao, D. P. Jin, S. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X. L. Kang, X. S. Kang, M. Kavatsyuk, B. C. Ke, T. Khan, P. Kiese, R. Kliemt, L. Koch, O. B. Kolcu, B. Kopf, M. Kornicer, M. Kuemmel, M. Kuhlmann, A. Kupsc, W. Kühn, J. S. Lange, M. Lara, P. Larin, L. Lavezzi, H. Leithoff, C. Leng, C. Li, Cheng Li, D. M. Li, F. Li, F. Y. Li, G. Li, H. B. Li, H. J. Li, J. C. Li, Jin Li, K. Li, K. Li, Lei Li, P. L. Li, P. R. Li, Q. Y. Li, T. Li, W. D. Li, W. G. Li, X. L. Li, X. N. Li, X. Q. Li, Z. B. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, D. X. Lin, B. Liu, B. J. Liu, C. X. Liu, D. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. H. Liu, H. H. Liu, H. M. Liu, J. B. Liu, J. P. Liu, J. Y. Liu, K. Liu, K. Y. Liu, Ke Liu, L. D. Liu, P. L. Liu, Q. Liu, S. B. Liu, X. Liu, Y. B. Liu, Y. Y. Liu, Z. A. Liu, Zhiqing Liu, Y. F. Long, X. C. Lou, H. J. Lu, J. G. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, T. Luo, X. L. Luo, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, T. Ma, X. N. Ma, X. Y. Ma, Y. M. Ma, F. E. Maas, M. Maggiora, Q. A. Malik, Y. J. Mao, Z. P. Mao, S. Marcello, J. G. Messchendorp, G. Mezzadri, J. Min, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, C. Morales Morales, G. Morello, N. Yu. Muchnoi, H. Muramatsu, P. Musiol, A. Mustafa, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Niu, X. Y. Niu, S. L. Olsen, Q. Ouyang, S. Pacetti, Y. Pan, P. Patteri, M. Pelizaeus, J. Pellegrino, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, R. Poling, V. Prasad, H. R. Qi, M. Qi, S. Qian, C. F. Qiao, J. J. Qin, N. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, K. H. Rashid, C. F. Redmer, M. Richter, M. Ripka, G. Rong, Ch. Rosner, X. D. Ruan, A. Sarantsev, M. Savrié, C. Schnier, K. Schoenning, W. Shan, M. Shao, C. P. Shen, P. X. Shen, X. Y. Shen, H. Y. Sheng, J. J. Song, X. Y. Song, S. Sosio, C. Sowa, S. Spataro, G. X. Sun, J. F. Sun, S. S. Sun, X. H. Sun, Y. J. Sun, Y. K. Sun, Y. Z. Sun, Z. J. Sun, Z. T. Sun, C. J. Tang, G. Y. Tang, X. Tang, I. Tapan, M. Tiemens, B. T. Tsednee, I. Uman, G. S. Varner, B. Wang, B. L. Wang, D. Wang, D. Y. Wang, Dan Wang, K. Wang, L. L. Wang, L. S. Wang, M. Wang, P. Wang, P. L. Wang, W. P. Wang, X. F. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Z. Wang, Z. G. Wang, Z. H. Wang, Z. Y. Wang, Z. Y. Wang, T. Weber, D. H. Wei, P. Weidenkaff, S. P. Wen, U. Wiedner, M. Wolke, L. H. Wu, L. J. Wu, Z. Wu, L. Xia, Y. Xia, D. Xiao, H. Xiao, Y. J. Xiao, Z. J. Xiao, Y. G. Xie, Y. H. Xie, X. A. Xiong, Q. L. Xiu, G. F. Xu, J. J. Xu, L. Xu, Q. J. Xu, Q. N. Xu, X. P. Xu, L. Yan, W. B. Yan, W. C. Yan, Y. H. Yan, H. J. Yang, H. X. Yang, L. Yang, Y. H. Yang, Y. X. Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, J. S. Yu, C. Z. Yuan, Y. Yuan, A. Yuncu, A. A. Zafar, Y. Zeng, Z. Zeng, B. X. Zhang, B. Y. Zhang, C. C. Zhang, D. H. Zhang, H. H. Zhang, H. Y. Zhang, J. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, K. Zhang, L. Zhang, S. Q. Zhang, X. Y. Zhang, Y. Zhang, Y. Zhang, Y. H. Zhang, Y. T. Zhang, Yu Zhang, Z. H. Zhang, Z. P. Zhang, Z. Y. Zhang, G. Zhao, J. W. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, S. J. Zhao, T. C. Zhao, Y. B. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, W. J. Zheng, Y. H. Zheng, B. Zhong, L. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, Y. X. Zhou, K. Zhu, K. J. Zhu, S. Zhu, S. H. Zhu, X. L. Zhu, Y. C. Zhu, Y. S. Zhu, Z. A. Zhu, J. Zhuang, L. Zotti, B. S. Zou, J. H. Zou

Using a sample of 106 million $\psi(3686)$ decays, the branching fractions of $\psi(3686) \to \gamma \chi_{c0}, \psi(3686) \to \gamma \chi_{c1}$, and $\psi(3686) \to \gamma \chi_{c2}$ are measured with improved precision to be $(9.389 \pm 0.014 \pm 0. Read More

Simulation-based learning (SBL) is gaining popularity as a low-cost and convenient training technique in a vast range of applications. However, for a SBL platform to be fully utilized as an effective training tool, it is essential that feedback on performance is provided automatically in real-time during training. It is the aim of this paper to develop an efficient and effective feedback extraction method for the provision of real-time feedback in SBL. Read More

The Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) near-IR channel is extensively used in time-resolved observations, especially for transiting exoplanet spectroscopy and brown dwarf and directly imaged exoplanet rotational phase mapping. The ramp effect is the dominant source of systematics in the WFC3 for time-resolved observations, which limits its photometric precision. Current mitigation strategies are based on empirical fits and require additional orbits "to help the telescope reach a thermal equilibrium". Read More

In this article, we briefly review the recent progress on collective flow and hydrodynamics in large and small systems at the Large Hadron Collider (LHC), which includes the following topics: extracting the QGP viscosity from the flow data, initial state fluctuations and final state correlations in 2.76 A TeV Pb--Pb collisions, correlations and collective flow in high energy p--Pb and p--p collisions. Read More

Thermoelectrics (TE) materials manifest themselves in direct conversion of temperature differences to electric power and vice versa. Despite remarkable advances have been achieved in the past decades for various TE systems, the energy conversion efficiencies of TE devices, which is characterized by a dimensionless figure-of-merit (ZT ), remain a generally poor factor that severely limits their competitiveness and range of employment. The bottleneck for substantially boosting ZT coefficient lies in the strong interdependence of the physical parameters involved in electronic and phononic transport. Read More

he DArk Matter Particle Explorer (DAMPE) is a general purposed satellite-borne high energy $\gamma-$ray and cosmic ray detector, and among the scientific objectives of DAMPE are the searches for the origin of cosmic rays and an understanding of Dark Matter particles. As one of the four detectors in DAMPE, the Plastic Scintillator Detector (PSD) plays an important role in the particle charge measurement and the photons/electrons separation. The PSD has 82 modules, each consists of a long organic plastic scintillator bar and two PMTs at both ends for readout, in two layers and covers an overall active area larger than 82 cm $\times$ 82 cm. Read More

We perform a phenomenological analysis of the $\cos 2 \phi $ azimuthal asymmetry in virtual photon plus jet production induced by the linear polarization of gluons in unpolarized $pA$ collisions. Although the linearly polarized gluon distribution becomes maximal at small $x$, TMD evolutionleads to a Sudakov suppression of the asymmetry with increasing invariant mass of the $\gamma^*$-jet pair. Employing a small-$x$ model input distribution, the asymmetry is found to be strongly suppressed under TMD evolution, but still remains sufficiently large to be measurable in the typical kinematical region accessible at RHIC or LHC at moderate photon virtuality, whereas it is expected to be negligible in $Z/W$-jet pair production at LHC. Read More

Monolayer transition metal dichalcogenides are uniquely-qualified materials for photonics because they combine well defined tunable direct band gaps and selfpassivated surfaces without dangling bonds. However, the atomic thickness of these 2D materials results in low photo absorption limiting the achievable photo luminescence intensity. Such emission can, in principle, be enhanced via nanoscale antennae resulting in; a. Read More

This paper is concerned about the lifespan estimate to the Cauchy problem of semilinear damped wave equations with the Fujita critical exponent in high dimensions$(n\geq 4)$. We establish the sharp upper bound of the lifespan in the following form \begin{equation}\nonumber\\ \begin{aligned} T(\varepsilon)\leq \exp(C\varepsilon^{-\frac 2n}), \end{aligned} \end{equation} by using the heat kernel as the test function. Read More

Maximum rank-distance (MRD) codes are extremal codes in the space of $m\times n$ matrices over a finite field, equipped with the rank metric. Up to generalizations, the classical examples of such codes were constructed in the 1970s and are today known as Gabidulin codes. Motivated by several recent approaches to construct MRD codes that are inequivalent to Gabidulin codes, we study the equivalence issue for Gabidulin codes themselves. Read More

Among the family of TMDs, ReS2 takes a special position, which crystalizes in a unique distorted low-symmetry structure at ambient conditions. The interlayer interaction in ReS2 is rather weak, thus its bulk properties are similar to that of monolayer. However, how does compression change its structure and electronic properties is unknown so far. Read More

A closed formula of the universal part of supersymmetric R\'enyi entropy $S_q$ for six-dimensional $(1,0)$ superconformal theories is proposed. Within our arguments, $S_q$ across a spherical entangling surface is a cubic polynomial of $\nu=1/q$, with $4$ coefficients expressed as linear combinations of the 't Hooft anomaly coefficients for the $R$-symmetry and gravitational anomalies. As an application, we establish linear relations between the $c$-type Weyl anomalies and the 't Hooft anomaly coefficients. Read More

We study interaction effect of quantum spin Hall state in InAs/GaSb quantum wells under an in-plane magnetic field by using the self-consistent mean field theory. We construct a phase diagram as a function of intra-layer and inter-layer interactions, and identify two novel phases, a charge/spin density wave phase and an exciton condensate phase. The charge/spin density wave phase is topologically non-trivial with helical edge transport at the boundary, while the exciton condensate phase is topologically trivial. Read More

In this paper, we discuss random matrix behaviors in the $\mathcal{N}=1$ supersymmetric generalization of Sachdev-Ye-Kitaev (SYK) model, a toy model for two-dimensional quantum black hole with supersymmetric constraint. Some analytical arguments and numerical results are given to show that the statistics of the supersymmetric SYK model could be interpreted as standard random matrix ensembles, with a different eight-fold classification from the original SYK model and some new features. The time-dependent evolution of the spectral form factor is also investigated, where predictions from random matrix theory are governing the late time behavior of the chaotic Hamiltonian with supersymmetry. Read More

This paper presents a robust and efficient semi-dense visual odometry solution for RGB-D cameras. The core of our method is a 2D-3D ICP pipeline which estimates the pose of the sensor by registering the projection of a 3D semi-dense map of the reference frame with the 2D semi-dense region extracted in the current frame. The processing is speeded up by efficiently implemented approximate nearest neighbour fields under the Euclidean distance criterion, which permits the use of compact Gauss-Newton updates in the optimization. Read More

The advance of terahertz science and technology yet lays wait for the breakthrough in high-efficiency and high-power solid-state terahertz sources applicable at room temperature. Plasmon in two-dimensional electron gas (2DEG) has long been pursued as a type of promising active medium for terahertz emitters. However, a high wall-plug efficiency sufficient for high-power operation has not been achieved. Read More

In order to solve the Boltzmann equation numerically, in the present work, we propose a new model equation to approximate the Boltzmann equation without angular cutoff. Here the approximate equation incorporates Boltzmann collision operator with angular cut-off and the Landau collision operator. As a first step, we prove the well-posedness theory for our approximate equation. Read More

A high precision, and space time fully decoupled, wavelet formulation numerical method is developed for a class of nonlinear initial boundary value problems. This method is established based on a proposed Coiflet based approximation scheme with an adjustable high order for a square integrable function over a bounded interval, which allows expansion coefficients to be explicitly expressed by function values at a series of single points. In applying the solution method, the nonlinear initial boundary value problems are first spatially discretized into a nonlinear initial value problem by combining the proposed wavelet approximation scheme and the conventional Galerkin method. Read More

Transportation mode detection with personal devices has been investigated for over ten years due to its importance in monitoring ones' activities, understanding human mobility, and assisting traffic management. However, two main limitations are still preventing it from large-scale deployments: high power consumption, and the lack of high-volume and diverse labeled data. In order to reduce power consumption, existing approaches are sampling using fewer sensors and with lower frequency, which however lead to a lower accuracy. Read More

In this paper, we study the global existence of classical solutions to the three dimensional incompressible viscous magneto-hydrodynamical system without magnetic diffusion on periodic boxes, i.e., with periodic boundary conditions. Read More

This paper studies the global existence of classical solutions to the two-dimensional incompressible magneto-hydrodynamical (MHD) system with only magnetic diffusion on the periodic domain. The approach is based on a time-weighted energy estimate, under the assumptions that the initial magnetic field is close enough to an equilibrium state and the initial data have reflection symmetry. Read More

We show that the following double integral \[\int_{0}^\pi {\rm d}x \int_0^x {\rm d}y \frac{1}{\sqrt{1-\smash[b]{p}\cos x}\sqrt{1+\smash[b]{q\cos y}}}\]remains invariant as one trades the parameters $p$ and $q$ for $p'=\sqrt{1-p^2}$ and $q'=\sqrt{1-q^2}$ respectively. This invariance property is suggested from symmetry considerations in the operating characterstics of a semiconductor Hall-effect device. Read More

Vortices play a crucial role in determining the properties of superconductors as well as their applications. Therefore, characterization and manipulation of vortices, especially at the single vortex level, is of great importance. Among many techniques to study single vortices, scanning tunneling microscopy (STM) stands out as a powerful tool, due to its ability to detect the local electronic states and high spatial resolution. Read More

In this article we consider static Bayesian parameter estimation for partially observed diffusions that are discretely observed. We work under the assumption that one must resort to discretizing the underlying diffusion process, for instance using the Euler-Maruyama method. Given this assumption, we show how one can use Markov chain Monte Carlo (MCMC) and particularly particle MCMC [Andrieu, C. Read More

Transition metal dichalcogenide (TMD) monolayers are direct bandgap semiconductors that feature tightly bound excitons, strong spin-orbit coupling, and spin-valley degrees of freedom. Depending on the spin configuration of the electron-hole pairs, intra-valley excitons of TMD monolayers can be either optically bright or dark. Dark excitons involve nominally spin-forbidden optical transitions with zero in-plane transition dipole moment, making their detection with conventional far-field optical techniques challenging. Read More

A high order wavelet integral collocation method (WICM) is developed for general nonlinear boundary value problems in physics. This method is established based on Coiflet approximation of multiple integrals of interval bounded functions combined with an accurate and adjustable boundary extension technique. The convergence order of this approximation has been proven to be N as long as the Coiflet with N-1 vanishing moment is adopted, which can be any positive even integers. Read More

Recent studies have revealed that domain walls in magnetic nanostructures can serve as compact, energy-efficient spin-wave waveguides for building magnonic devices that are considered promising candidates for overcoming the challenges and bottlenecks of today's CMOS technologies. However, imprinting long strip-domain walls into magnetic nanowires remains a challenge, especially in curved geometries. Here, through micromagnetic simulations, we present a method for writing strip-domain walls into curved magnetic nanowires using spin-orbit torque. Read More

We present a new class of decentralized first-order methods for nonsmooth and stochastic optimization problems defined over multiagent networks. Considering that communication is a major bottleneck in decentralized optimization, our main goal in this paper is to develop algorithmic frameworks which can significantly reduce the number of inter-node communications. We first propose a decentralized primal-dual method which can find an $\epsilon$-solution both in terms of functional optimality gap and feasibility residual in $O(1/\epsilon)$ inter-node communication rounds when the objective functions are convex and the local primal subproblems are solved exactly. Read More

We argue that extensibility is a key challenge for knowledge representation. For this purpose, we propose assertional logic - a knowledge model for easier extension with new AI building blocks. In assertional logic, all syntactic objects are categorized as set theoretic constructs including individuals, concepts and operators, and all kinds of knowledge are formalized by equality assertions. Read More

The cosmic ray(CR) positrons and antiprotons are often regarded as the products of collisions of CR nucleons with the interstellar medium. However this conclusion is challenged by recent experimental data. In this work, we choose the latest AMS-02 data to analyze the astrophysical background of CR positrons and antiprotons based on the GALPROP code for CR propagation and QGSJET-II-04 for hadronic CR interactions. Read More

We study the motion of magnetic skyrmions in a nanowire induced by a spin-wave current $J$ flowing out of a driving layer close to the edge of the wire. By applying micromagnetic simulation and an analysis of the effective Thiele equation, we find that the skyrmion trajectory is governed by an interplay of both forces due to the magnon current and the wire boundary. The skyrmion is attracted to the driving layer and is accelerated by the repulsive force due to the wire boundary. Read More

Image blur and image noise are common distortions during image acquisition. In this paper, we systematically study the effect of image distortions on the deep neural network (DNN) image classifiers. First, we examine the DNN classifier performance under four types of distortions. Read More

Deep Convolution Neural Networks (DCNNs) are capable of learning unprecedentedly effective image representations. However, their ability in handling significant local and global image rotations remains limited. In this paper, we propose Active Rotating Filters (ARFs) that actively rotate during convolution and produce feature maps with location and orientation explicitly encoded. Read More

A photoinduced current of a layered MoS2-based transistor is studied from first-principles. Under the illumination of circular polarized light, a valley-polarized current is generated, which can be tuned by the gate voltage. For monolayer MoS2, the valley-polarized spin-up (down) electron current at K (K') points is induced by the right (left) circular polarized light. Read More

The surface states in three-dimensional (3D) topological insulators (TIs) can be described by a two-dimensional (2D) continuous Dirac Hamiltonian. However, there exists the Fermion doubling problem when putting the continuous 2D Dirac equation into a lattice model. In this letter, we introduce a Wilson term with a zero bare mass into the 2D lattice model to overcome the difficulty. Read More

Deep neural networks have been widely adopted for automatic organ segmentation from CT-scanned images. However, the segmentation accuracy on some small organs (e.g. Read More

We report high pressure studies of the structural stability of Ru2Sn3, a new type of three dimensional topological insulator (3D-TI) with unique quasi-one dimensional Dirac electron states throughout the surface Brillouin zone of its one-atmosphere low temperature orthorhombic form. Our in-situ high-pressure synchrotron x-ray diffraction and electrical resistance measurements reveal that upon increasing pressure the tetragonal to orthorhombic shifts to higher temperature. We find that the stability of the orthorhombic phase that hosts the non-trivial topological ground state can be pushed up to room temperature by an applied pressure of ~ 20 GPa. Read More

Designing chaotic maps with complex dynamics is a challenging topic. This paper introduces the nonlinear chaotic processing (NCP) model, which contains six basic nonlinear operations. Each operation is a general framework that can use existing chaotic maps as seed maps to generate a huge number of new chaotic maps. Read More

The Plastic Scintillator Detector (PSD) is one of the main sub-detectors in the DArk Matter Particle Explorer (DAMPE) project. It will be operated over a large temperature range from -$10$ to $30^{\circ}$C, so the temperature effect of the whole detection system should be studied in detail. The temperature dependence of the PSD system is mainly contributed by the three parts: the plastic scintillator bar, the photomultiplier tube (PMT), and the Front End Electronics (FEE). Read More

We have designed a single-pixel camera with imaging around corners based on computational ghost imaging. It can obtain the image of an object when the camera cannot look at the object directly. Our imaging system explores the fact that a bucket detector in a ghost imaging setup has no spatial resolution capability. Read More