Y. Zhou - for the ALICE Collaboration

Y. Zhou
Are you Y. Zhou?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Y. Zhou
Affiliation
for the ALICE Collaboration
Location

Pubs By Year

External Links

Pub Categories

 
Quantum Physics (8)
 
Physics - Materials Science (6)
 
High Energy Physics - Phenomenology (4)
 
Physics - Optics (4)
 
High Energy Physics - Experiment (4)
 
Physics - Instrumentation and Detectors (3)
 
Nuclear Experiment (3)
 
Physics - Atomic Physics (3)
 
Computer Science - Learning (3)
 
Physics - Mesoscopic Systems and Quantum Hall Effect (3)
 
Computer Science - Artificial Intelligence (3)
 
Instrumentation and Methods for Astrophysics (2)
 
Mathematics - Representation Theory (2)
 
Nuclear Theory (2)
 
Statistics - Machine Learning (2)
 
Statistics - Computation (2)
 
Mathematics - Combinatorics (2)
 
Physics - Strongly Correlated Electrons (2)
 
Solar and Stellar Astrophysics (2)
 
Physics - Superconductivity (2)
 
Computer Science - Cryptography and Security (1)
 
Computer Science - Human-Computer Interaction (1)
 
Computer Science - Distributed; Parallel; and Cluster Computing (1)
 
Computer Science - Discrete Mathematics (1)
 
Mathematics - Information Theory (1)
 
Computer Science - Information Theory (1)
 
Mathematics - Analysis of PDEs (1)
 
Earth and Planetary Astrophysics (1)
 
Mathematics - Geometric Topology (1)
 
Computer Science - Networking and Internet Architecture (1)
 
Quantitative Biology - Neurons and Cognition (1)
 
Computer Science - Computation and Language (1)
 
Computer Science - Performance (1)
 
Mathematics - Optimization and Control (1)
 
Physics - Plasma Physics (1)
 
Computer Science - Information Retrieval (1)
 
Computer Science - Computer Vision and Pattern Recognition (1)

Publications Authored By Y. Zhou

The Maximum Balanced Biclique Problem (MBBP) is a prominent model with numerous applications. Yet, the problem is NP-hard and thus computationally challenging. We propose novel ideas for designing effective exact algorithms for MBBP. Read More

The Maximum Balanced Biclique Problem is a well-known graph model with relevant applications in diverse domains. This paper introduces a novel algorithm, which combines an effective constraint-based tabu search procedure and two dedicated graph reduction techniques. We verify the effectiveness of the algorithm on 30 classical random benchmark graphs and 25 very large real-life sparse graphs from the popular Koblenz Network Collection (KONECT). Read More

In this paper, we reformulated the spell correction problem as a machine translation task under the encoder-decoder framework. This reformulation enabled us to use a single model for solving the problem that is traditionally formulated as learning a language model and an error model. This model employs multi-layer recurrent neural networks as an encoder and a decoder. Read More

Transition metal dichalcogenide monolayers are promising candidates for exploring new electronic and optical phenomena and for realizing atomically thin optoelectronic devices. They host tightly bound electron-hole pairs (excitons) that can be efficiently excited by resonant light fields. Here, we demonstrate that a single monolayer of molybdenum diselenide (MoSe2) can dramatically modify light transmission near the excitonic resonance, acting as an electrically switchable mirror that reflects up to 85% of incident light at cryogenic temperatures. Read More

The Quantum spin liquid (QSL) is an exotic quantum state of matter that does not exhibit classical magnetic order at zero temperature. The realization of such a state in actual materials is of significant importance, as it would provide a path to protected states for quantum information and also to Majorana fermions - both very active areas of interest in condensed matter physics. No solid evidence for the existence of such materials has been established in the laboratory, however, despite a decades-long search. Read More

In many modern machine learning applications, structures of underlying mathematical models often yield nonconvex optimization problems. Due to the intractability of nonconvexity, there is a rising need to develop efficient methods for solving general nonconvex problems with certain performance guarantee. In this work, we investigate the accelerated proximal gradient method for nonconvex programming (APGnc). Read More

Critical node problems involve identifying a subset of critical nodes from an undirected graph whose removal results in optimizing a pre-defined measure over the residual graph. As useful models for a variety of practical applications, these problems are computational challenging. In this paper, we study the classic critical node problem (CNP) and introduce an effective memetic algorithm for solving CNP. Read More

Two-photon superbunching of pseudothermal light is observed with single-mode continuous-wave laser light in a linear optical system. By adding more two-photon paths via three rotating ground glasses,g(2)(0) = 7.10 is experimentally observed. Read More

We revisit Parker's conjecture of current singularity formation in 3D line-tied plasmas, using a recently developed numerical method, variational integration for ideal magnetohydrodynamics in Lagrangian labeling. With the frozen-in equation built-in, the method is free of artificial reconnection, hence arguably an optimal tool for studying current singularity formation. Using this method, the formation of current singularity has previously been confirmed in the Hahm-Kulsrud-Taylor problem in 2D. Read More

Flavons are crucial for understanding lepton mixing in models with non-Abelian discrete symmetries. They also result in charged lepton flavour violation (CLFV) via the couplings with leptons. I emphasise that the flavon-triggered CLFV succeeds strong connections with lepton flavour mixing. Read More

We describe the first precision measurement of the electron's electric dipole moment (eEDM, $d_e$) using trapped molecular ions, demonstrating the application of spin interrogation times over 700 ms to achieve high sensitivity and stringent rejection of systematic errors. Through electron spin resonance spectroscopy on $^{180}{\rm Hf}^{19}{\rm F}^{+}$ in its metastable $^{3}\Delta_{1}$ electronic state, we obtain $d_e = (0.9 \pm 7. Read More

2017Apr
Authors: BESIII collaboration, M. Ablikim, M. N. Achasov, S. Ahmed, O. Albayrak, M. Albrecht, M. Alekseev, A. Amoroso, F. F. An, Q. An, J. Z. Bai, O. Bakina, R. Baldini Ferroli, Y. Ban, D. W. Bennett, J. V. Bennett, N. Berger, M. Bertani, D. Bettoni, J. M. Bian, F. Bianchi, E. Boger, I. Boyko, R. A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G. F. Cao, S. A. Cetin, J. Chai, J. F. Chang, G. Chelkov, G. Chen, H. S. Chen, J. C. Chen, M. L. Chen, P. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, X. K. Chu, G. Cibinetto, H. L. Dai, J. P. Dai, A. Dbeyssi, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. DeMori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, O. Dorjkhaidav, Z. L. Dou, S. X. Du, P. F. Duan, J. Fang, S. S. Fang, X. Fang, Y. Fang, R. Farinelli, L. Fava, S. Fegan, F. Feldbauer, G. Felici, C. Q. Feng, E. Fioravanti, M. Fritsch, C. D. Fu, Gao, Q. Gao, X. L. Gao, Y. Gao, Z. Gao, I. Garzia, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, M. H. Gu, S. Gu, Y. T. Gu, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, Z. Haddadi, A. Hafner, S. Han, X. Q. Hao, F. A. Harris, K. L. He, X. Q. He, F. H. Heinsius, T. Held, Y. K. Heng, T. Holtmann, Z. L. Hou, C. Hu, H. M. Hu, T. Hu, Y. Hu, G. S. Huang, J. S. Huang, X. T. Huang, X. Z. Huang, Z. L. Huang, T. Hussain, W. Ikegami Andersson, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, X. S. Jiang, X. Y. Jiang, J. B. Jiao, Z. Jiao, D. P. Jin, S. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X. L. Kang, X. S. Kang, M. Kavatsyuk, B. C. Ke, Tabassum KhanKhan, P. Kiese, R. Kliemt, B. Kloss, L. K. Koch, O. B. Kolcu, B. Kopf, M. Kornicer, M. Kuemmel, M. Kuhlmann, A. Kupsc, W. Kühn, J. S. Lange, M. Lara, P. Larin, L. Lavezzi, H. Leithoff, C. Leng, C. Li, ChengLi, D. M. Li, F. Li, F. Y. Li, G. Li, H. B. Li, H. J. Li, J. C. Li, JinLi, K. Li, K. Li, LeiLi, P. L. Li, P. R. Li, Q. Y. Li, T. Li, W. D. Li, W. G. Li, X. L. Li, X. N. Li, X. Q. Li, Z. B. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, D. X. Lin, B. Liu, B. J. Liu, C. X. Liu, D. Liu, F. H. Liu, FangLiu, FengLiu, H. B. Liu, H. H. Liu, H. H. Liu, H. M. Liu, J. B. Liu, J. P. Liu, J. Y. Liu, K. Liu, K. Y. Liu, KeLiu, L. D. Liu, P. L. Liu, Q. Liu, S. B. Liu, X. Liu, Y. B. Liu, Y. Y. Liu, Z. A. Liu, ZhiqingLiu, Y. F. Long, X. C. Lou, H. J. Lu, J. G. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, T. Luo, X. L. Luo, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, T. Ma, X. N. Ma, X. Y. Ma, Y. M. Ma, F. E. Maas, M. Maggiora, Q. A. Malik, Y. J. Mao, Z. P. Mao, S. Marcello, J. G. Messchendorp, G. Mezzadri, J. Min, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, C. Morales Morales, G. Morello, N. Yu. Muchnoi, H. Muramatsu, P. Musiol, A. Mustafa, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Niu, X. Y. Niu, S. L. Olsen, Q. Ouyang, S. Pacetti, Y. Pan, P. Patteri, M. Pelizaeus, J. Pellegrino, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, R. Poling, V. Prasad, H. R. Qi, M. Qi, S. Qian, C. F. Qiao, J. J. Qin, N. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, K. H. Rashid, C. F. Redmer, M. Richter, M. Ripka, G. Rong, Ch. Rosner, X. D. Ruan, A. Sarantsev, M. Savrié, C. Schnier, K. Schoenning, W. Shan, M. Shao, C. P. Shen, P. X. Shen, X. Y. Shen, H. Y. Sheng, J. J. Song, X. Y. Song, S. Sosio, C. Sowa, S. Spataro, G. X. Sun, J. F. Sun, S. S. Sun, X. H. Sun, Y. J. Sun, Y. KSun, Y. Z. Sun, Z. J. Sun, Z. T. Sun, C. J. Tang, X. Tang, I. Tapan, M. Tiemens, TsTsednee, I. Uman, G. S. Varner, B. Wang, B. L. Wang, D. Wang, D. Y. Wang, DanWang, K. Wang, L. L. Wang, L. S. Wang, M. Wang, P. Wang, P. L. Wang, W. P. Wang, X. F. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Z. Wang, Z. G. Wang, Z. H. Wang, Z. Y. Wang, Z. Y. Wang, T. Weber, D. H. Wei, P. Weidenkaff, S. P. Wen, U. Wiedner, M. Wolke, L. H. Wu, L. J. Wu, Z. Wu, L. Xia, Y. Xia, D. Xiao, Y. J. Xiao, Z. J. Xiao, Y. G. Xie, YuehongXie, X. A. Xiong, Q. L. Xiu, G. F. Xu, J. J. Xu, L. Xu, Q. J. Xu, Q. N. Xu, X. P. Xu, L. Yan, W. B. Yan, W. C. Yan, Y. H. Yan, H. J. Yang, H. X. Yang, L. Yang, Y. H. Yang, Y. X. Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, J. S. Yu, C. Z. Yuan, Y. Yuan, A. Yuncu, A. A. Zafar, Y. Zeng, Z. Zeng, B. X. Zhang, B. Y. Zhang, C. C. Zhang, D. H. Zhang, H. H. Zhang, H. Y. Zhang, J. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, K. Zhang, L. Zhang, S. Q. Zhang, X. Y. Zhang, Y. Zhang, Y. Zhang, Y. H. Zhang, Y. T. Zhang, YuZhang, Z. H. Zhang, Z. P. Zhang, Z. Y. Zhang, G. Zhao, J. W. Zhao, J. Y. Zhao, J. Z. Zhao, LeiZhao, LingZhao, M. G. Zhao, Q. Zhao, S. J. Zhao, T. C. Zhao, Y. B. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, W. J. Zheng, Y. H. Zheng, B. Zhong, L. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, Y. X. Zhou, K. Zhu, K. J. Zhu, S. Zhu, S. H. Zhu, X. L. Zhu, Y. C. Zhu, Y. S. Zhu, Z. A. Zhu, J. Zhuang, L. Zotti, B. S. Zou, J. H. Zou

We observe for the first time the process $e^{+}e^{-} \rightarrow \eta h_c$ with data collected by the BESIII experiment. Significant signals are observed at the center-of-mass energy $\sqrt{s}=4.226$ GeV, and the Born cross section is measured to be $(9. Read More

In layered transition metal dichalcogenides (LTMDCs) that display both charge density waves (CDWs) and superconductivity, the superconducting state generally emerges directly on suppression of the CDW state. Here, however, we report a different observation for pressurized TaTe2, a non-superconducting CDW-bearing LTMDC at ambient pressure. We find that a superconducting state does not occur in TaTe2 after the full suppression of its CDW state, which we observe at about 3 GPa, but, rather, a non-superconducting semimetal state is observed. Read More

We propose a new mechanism of baryogenesis which proceeds via a CP-violating phase transition. During this phase transition, the coupling of the Weinberg operator is dynamically realised and subsequently a lepton asymmetry is generated via the non-zero interference of this operator at different times. This new scenario of leptogenesis provides a direct connection between the baryon asymmetry, low energy neutrino parameters and leptonic flavour models. Read More

In this extended abstract, we propose Structured Production Systems (SPS), which extend traditional production systems with well-formed syntactic structures. Due to the richness of structures, structured production systems significantly enhance the expressive power as well as the flexibility of production systems, for instance, to handle uncertainty. We show that different rule application strategies can be reduced into the basic one by utilizing structures. Read More

2017Apr

The second and the third order anisotropic flow, $V_{2}$ and $V_3$, are determined by the corresponding initial spatial anisotropy coefficients, $\varepsilon_{2}$ and $\varepsilon_{3}$, in the initial density distribution. On the contrary, the higher order anisotropic flow $V_n$ ($n > 3$), in addition to their dependence on the same order initial anisotropy coefficient $\varepsilon_{n}$, have a significant contribution from lower order initial anisotropy coefficients, which leads to mode-coupling effects. In this contribution, we present the investigations on linear and non-linear modes in higher order anisotropic flow ($V_{4}$, $V_{5}$ and $V_{6}$) in Pb--Pb collisions at $\sqrt{s_{\rm NN}} =$ 2. Read More

Coherence, the superposition of orthogonal quantum states, is indispensable in various quantum processes. Inspired by the polynomial invariant for classifying and quantifying entanglement, we first define polynomial coherence measure and systematically investigate its properties. Except for the qubit case, we show that there is no polynomial coherence measure satisfying the criterion that its value takes zero if and only if for incoherent states. Read More

We parametrize the Stillinger-Weber potential for 156 two-dimensional atomic crystals. Parameters for the Stillinger-Weber potential are obtained from the valence force field model following the analytic approach (Nanotechnology 26, 315706 (2015)), in which the valence force constants are determined by the phonon spectrum. The Stillinger-Weber potential is an efficient nonlinear interaction, and is applicable for numerical simulations of nonlinear physical or mechanical processes. Read More

Quantum sensors with solid state electron spins have attracted considerable interest due to their nanoscale spatial resolution.A critical requirement is to suppress the environment noise of the solid state spin sensor.Here we demonstrate a nanoscale thermometer based on silicon carbide (SiC) electron spins. Read More

Persistent spread measurement is to count the number of distinct elements that persist in each network flow for predefined time periods. It has many practical applications, including detecting long-term stealthy network activities in the background of normal-user activities, such as stealthy DDoS attack, stealthy network scan, or faked network trend, which cannot be detected by traditional flow cardinality measurement. With big network data, one challenge is to measure the persistent spreads of a massive number of flows without incurring too much memory overhead as such measurement may be performed at the line speed by network processors with fast but small on-chip memory. Read More

In this paper, we give a complete classification of cotorsion pairs in a cluster category $\mathscr{C}$ of type $A^\infty_\infty$ via certain configurations of arcs, called $\tau$-compact Ptolemy diagrams, in an infinite strip with marked points. As applications, we classify $t$-structures and functorially finite rigid subcategories in $\mathscr{C}$, respectively. We also deduce Liu-Paquette's classification of cluster tilting categories of $\mathscr{C}$ and Ng's classification of torsion pairs in the cluster category of type $A_\infty$. Read More

Serotonergic, noradrenergic and dopaminergic brainstem (including midbrain) neurons, often exhibit spontaneous and fairly regular spiking with frequencies of order a few Hz, though dopaminergic and noradrenergic neurons only exhibit such pacemaker-type activity in vitro or in vivo under special conditions. A large number of ion channel types contribute to such spiking so that detailed modeling of spike generation leads to the requirement of solving very large systems of differential equations. It is useful to have simplified mathematical models of spiking in such neurons so that, for example, features of inputs and output spike trains can be incorporated including stochastic effects for possible use in network models. Read More

With ever growing data volume and model size, an error-tolerant, communication efficient, yet versatile distributed algorithm has become vital for the success of many large-scale machine learning applications. In this work we propose m-PAPG, an implementation of the flexible proximal gradient algorithm in model parallel systems equipped with the partially asynchronous communication protocol. The worker machines communicate asynchronously with a controlled staleness bound $s$ and operate at different frequencies. Read More

Using only implicit data, many recommender systems fail in general to provide a precise set of recommendations to users with limited interaction history. This issue is regarded as the "Cold Start" problem and is typically resolved by switching to content-based approaches where extra costly information is required. In this paper, we use a dimensionality reduction algorithm, Word2Vec (W2V), originally applied in Natural Language Processing problems under the framework of Collaborative Filtering (CF) to tackle the "Cold Start" problem using only implicit data. Read More

Recent advances in the preparation, control and measurement of atomic gases have led to new insights into the quantum world and unprecedented metrological sensitivities, e.g. in measuring gravitational forces and magnetic fields. Read More

A key element in the study of cold atoms, and their use in emerging quantum technologies, is trapping the atoms in an ultra-high vacuum (UHV) chamber. Many methods have been used to trap atoms including atom chips and magneto-optical traps (MOTs). However, the bulky apparatus, and current-carrying coils, used so far in most MOTs restrict the reduction of power and physical size, as required for quantum technology applications. Read More

Superconductivity is a fascinating quantum phenomenon characterized by zero electrical resistance and the Meissner effect. To date, several distinct families of superconductors (SCs) have been discovered. These include three-dimensional (3D) bulk SCs in both inorganic and organic materials as well as two-dimensional (2D) thin film SCs but only in $inorganic$ materials. Read More

Magnetic skyrmions are swirling magnetic textures with novel characteristics suitable for future spintronic applications. Recent studies confirmed the room-temperature stabilization of skyrmions in ultrathin ferromagnets. However, such ferromagnetic skyrmions show undesirable topological effect, the skyrmion Hall effect, which leads to their current-driven motion towards device edges, where the skyrmions could easily be annihilated by topographic defects. Read More

We give a finite presentation for the braid twist group of a decorated surface. If the decorated surface arises from a triangulated marked surface without punctures, we obtain a finite presentation for the spherical twist group of the associated 3-Calabi-Yau category. In the sequel, the result will be used to prove that the (principal component of) space of stability conditions on the 3-Calabi-Yau category is simply connected. Read More

It has been well demonstrated that adversarial examples, i.e., natural images with visually imperceptible perturbations added, generally exist for deep networks to fail on image classification. Read More

An intriguing feature of the magnetic skyrmion in a frustrated magnetic system is its helicity-orbital coupling. When the magnetic dipole-dipole interaction (DDI) is neglected, a skyrmion can show a current-induced rotational motion together with a helicity rotation since the energy is independent of the helicity. Here, we explore the skyrmion dynamics in a frustrated magnetic system based on the $J_{1}$-$J_{2}$-$J_{3}$ classical Heisenberg model explicitly by including the DDI. Read More

The large-amplitude longitudinal oscillations of solar filaments have been observed and explored for more than ten years. Previous studies are mainly based on the one-dimensional rigid flux tube model with a single magnetic dip. However, it is noticed that there might be two magnetic dips, and hence two threads, along one magnetic field line. Read More

In this work we introduce a conditional accelerated lazy stochastic gradient descent algorithm with optimal number of calls to a stochastic first-order oracle and convergence rate $O\left(\frac{1}{\varepsilon^2}\right)$ improving over the projection-free, Online Frank-Wolfe based stochastic gradient descent of Hazan and Kale [2012] with convergence rate $O\left(\frac{1}{\varepsilon^4}\right)$. Read More

Data deduplication is able to effectively identify and eliminate redundant data and only maintain a single copy of files and chunks. Hence, it is widely used in cloud storage systems to save storage space and network bandwidth. However, the occurrence of deduplication can be easily identified by monitoring and analyzing network traffic, which leads to the risk of user privacy leakage. Read More

In this article we develop a new sequential Monte Carlo (SMC) method for multilevel (ML) Monte Carlo estimation. In particular, the method can be used to estimate expectations with respect to a target probability distribution over an infinite-dimensional and non-compact space as given, for example, by a Bayesian inverse problem with Gaussian random field prior. Under suitable assumptions the MLSMC method has the optimal $O(\epsilon^{-2})$ bound on the cost to obtain a mean-square error of $O(\epsilon^2)$. Read More

Interaction-free measurement (IFM), just as its name implies, can enable one to detect an object without interacting with it, i.e., substantially reducing the damage to the object. Read More

Monolayer films of FeSe grown on SrTiO$_3$ substrates exhibit significantly higher superconducting transition temperatures than those of bulk FeSe. Interaction of electrons in the FeSe layer with dipolar SrTiO$_3$ phonons has been suggested as the cause of the enhanced transition temperature. In this paper we systematically study the coupling of SrTiO$_3$ longitudinal optical phonons to the FeSe electron, including also electron-electron Coulomb interactions at the random phase approximation level. Read More

In this work, we present a method for targeted, maskless, and scalable fabrication of single silicon vacancy (VSi) defect arrays in silicon carbide (SiC) using focused ion beam. The resolution of implanted VSi defects is limited to a few tens of nanometers, defined by the diameter of the ion beam. Firstly, we studied the photoluminescence (PL) spectrum and optically detected magnetic resonance (ODMR) of the generated defect spin ensemble, confirming that the synthesized centers were in the desired defect state. Read More

A novel and simple superbunching pseudothermal light source is introduced based on common instruments such as laser, lens, pinhole and groundglass. $g^{(2)}(0)=3.66 \pm 0. Read More

2017Feb
Authors: BESIII collaboration, M. Ablikim, M. N. Achasov, S. Ahmed, M. Albrecht, A. Amoroso, F. F. An, Q. An, J. Z. Bai, O. Bakina, R. Baldini Ferroli, Y. Ban, D. W. Bennett, J. V. Bennett, N. Berger, M. Bertani, D. Bettoni, J. M. Bian, F. Bianchi, E. Boger, I. Boyko, R. A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G. F. Cao, S. A. Cetin, J. Chai, J. F. Chang, G. Chelkov, G. Chen, H. S. Chen, J. C. Chen, M. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, X. K. Chu, G. Cibinetto, H. L. Dai, J. P. Dai, A. Dbeyssi, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, O. Dorjkhaidav, Z. L. Dou, S. X. Du, P. F. Duan, J. Fang, S. S. Fang, X. Fang, Y. Fang, R. Farinelli, L. Fava, S. Fegan, F. Feldbauer, G. Felici, C. Q. Feng, E. Fioravanti, M. Fritsch, C. D. Fu, Q. Gao, X. L. Gao, Y. Gao, Y. G. Gao, Z. Gao, I. Garzia, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, M. H. Gu, S. Gu, Y. T. Gu, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, Z. Haddadi, S. Han, X. Q. Hao, F. A. Harris, K. L. He, X. Q. He, F. H. Heinsius, T. Held, Y. K. Heng, T. Holtmann, Z. L. Hou, C. Hu, H. M. Hu, T. Hu, Y. Hu, G. S. Huang, J. S. Huang, X. T. Huang, X. Z. Huang, Z. L. Huang, T. Hussain, W. Ikegami Andersson, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, X. S. Jiang, X. Y. Jiang, J. B. Jiao, Z. Jiao, D. P. Jin, S. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X. L. Kang, X. S. Kang, M. Kavatsyuk, B. C. Ke, T. Khan, P. Kiese, R. Kliemt, L. Koch, O. B. Kolcu, B. Kopf, M. Kornicer, M. Kuemmel, M. Kuhlmann, A. Kupsc, W. Kühn, J. S. Lange, M. Lara, P. Larin, L. Lavezzi, H. Leithoff, C. Leng, C. Li, Cheng Li, D. M. Li, F. Li, F. Y. Li, G. Li, H. B. Li, H. J. Li, J. C. Li, Jin Li, K. Li, K. Li, Lei Li, P. L. Li, P. R. Li, Q. Y. Li, T. Li, W. D. Li, W. G. Li, X. L. Li, X. N. Li, X. Q. Li, Z. B. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, D. X. Lin, B. Liu, B. J. Liu, C. X. Liu, D. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. H. Liu, H. H. Liu, H. M. Liu, J. B. Liu, J. P. Liu, J. Y. Liu, K. Liu, K. Y. Liu, Ke Liu, L. D. Liu, P. L. Liu, Q. Liu, S. B. Liu, X. Liu, Y. B. Liu, Y. Y. Liu, Z. A. Liu, Zhiqing Liu, Y. F. Long, X. C. Lou, H. J. Lu, J. G. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, T. Luo, X. L. Luo, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, T. Ma, X. N. Ma, X. Y. Ma, Y. M. Ma, F. E. Maas, M. Maggiora, Q. A. Malik, Y. J. Mao, Z. P. Mao, S. Marcello, J. G. Messchendorp, G. Mezzadri, J. Min, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, C. Morales Morales, G. Morello, N. Yu. Muchnoi, H. Muramatsu, P. Musiol, A. Mustafa, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Niu, X. Y. Niu, S. L. Olsen, Q. Ouyang, S. Pacetti, Y. Pan, P. Patteri, M. Pelizaeus, J. Pellegrino, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, R. Poling, V. Prasad, H. R. Qi, M. Qi, S. Qian, C. F. Qiao, J. J. Qin, N. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, K. H. Rashid, C. F. Redmer, M. Richter, M. Ripka, G. Rong, Ch. Rosner, X. D. Ruan, A. Sarantsev, M. Savrié, C. Schnier, K. Schoenning, W. Shan, M. Shao, C. P. Shen, P. X. Shen, X. Y. Shen, H. Y. Sheng, J. J. Song, X. Y. Song, S. Sosio, C. Sowa, S. Spataro, G. X. Sun, J. F. Sun, S. S. Sun, X. H. Sun, Y. J. Sun, Y. K. Sun, Y. Z. Sun, Z. J. Sun, Z. T. Sun, C. J. Tang, G. Y. Tang, X. Tang, I. Tapan, M. Tiemens, B. T. Tsednee, I. Uman, G. S. Varner, B. Wang, B. L. Wang, D. Wang, D. Y. Wang, Dan Wang, K. Wang, L. L. Wang, L. S. Wang, M. Wang, P. Wang, P. L. Wang, W. P. Wang, X. F. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Z. Wang, Z. G. Wang, Z. H. Wang, Z. Y. Wang, Z. Y. Wang, T. Weber, D. H. Wei, P. Weidenkaff, S. P. Wen, U. Wiedner, M. Wolke, L. H. Wu, L. J. Wu, Z. Wu, L. Xia, Y. Xia, D. Xiao, H. Xiao, Y. J. Xiao, Z. J. Xiao, Y. G. Xie, Y. H. Xie, X. A. Xiong, Q. L. Xiu, G. F. Xu, J. J. Xu, L. Xu, Q. J. Xu, Q. N. Xu, X. P. Xu, L. Yan, W. B. Yan, W. C. Yan, Y. H. Yan, H. J. Yang, H. X. Yang, L. Yang, Y. H. Yang, Y. X. Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, J. S. Yu, C. Z. Yuan, Y. Yuan, A. Yuncu, A. A. Zafar, Y. Zeng, Z. Zeng, B. X. Zhang, B. Y. Zhang, C. C. Zhang, D. H. Zhang, H. H. Zhang, H. Y. Zhang, J. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, K. Zhang, L. Zhang, S. Q. Zhang, X. Y. Zhang, Y. Zhang, Y. Zhang, Y. H. Zhang, Y. T. Zhang, Yu Zhang, Z. H. Zhang, Z. P. Zhang, Z. Y. Zhang, G. Zhao, J. W. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, S. J. Zhao, T. C. Zhao, Y. B. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, W. J. Zheng, Y. H. Zheng, B. Zhong, L. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, Y. X. Zhou, K. Zhu, K. J. Zhu, S. Zhu, S. H. Zhu, X. L. Zhu, Y. C. Zhu, Y. S. Zhu, Z. A. Zhu, J. Zhuang, L. Zotti, B. S. Zou, J. H. Zou

Using a sample of 106 million $\psi(3686)$ decays, the branching fractions of $\psi(3686) \to \gamma \chi_{c0}, \psi(3686) \to \gamma \chi_{c1}$, and $\psi(3686) \to \gamma \chi_{c2}$ are measured with improved precision to be $(9.389 \pm 0.014 \pm 0. Read More

Simulation-based training (SBT) is gaining popularity as a low-cost and convenient training technique in a vast range of applications. However, for a SBT platform to be fully utilized as an effective training tool, it is essential that feedback on performance is provided automatically in real-time during training. It is the aim of this paper to develop an efficient and effective feedback generation method for the provision of real-time feedback in SBT. Read More

The Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) near-IR channel is extensively used in time-resolved observations, especially for transiting exoplanet spectroscopy and brown dwarf and directly imaged exoplanet rotational phase mapping. The ramp effect is the dominant source of systematics in the WFC3 for time-resolved observations, which limits its photometric precision. Current mitigation strategies are based on empirical fits and require additional orbits "to help the telescope reach a thermal equilibrium". Read More

In this article, we briefly review the recent progress on collective flow and hydrodynamics in large and small systems at the Large Hadron Collider (LHC), which includes the following topics: extracting the QGP viscosity from the flow data, initial state fluctuations and final state correlations in 2.76 A TeV Pb--Pb collisions, correlations and collective flow in high energy p--Pb and p--p collisions. Read More

Thermoelectrics (TE) materials manifest themselves in direct conversion of temperature differences to electric power and vice versa. Despite remarkable advances have been achieved in the past decades for various TE systems, the energy conversion efficiencies of TE devices, which is characterized by a dimensionless figure-of-merit (ZT ), remain a generally poor factor that severely limits their competitiveness and range of employment. The bottleneck for substantially boosting ZT coefficient lies in the strong interdependence of the physical parameters involved in electronic and phononic transport. Read More

he DArk Matter Particle Explorer (DAMPE) is a general purposed satellite-borne high energy $\gamma-$ray and cosmic ray detector, and among the scientific objectives of DAMPE are the searches for the origin of cosmic rays and an understanding of Dark Matter particles. As one of the four detectors in DAMPE, the Plastic Scintillator Detector (PSD) plays an important role in the particle charge measurement and the photons/electrons separation. The PSD has 82 modules, each consists of a long organic plastic scintillator bar and two PMTs at both ends for readout, in two layers and covers an overall active area larger than 82 cm $\times$ 82 cm. Read More

We perform a phenomenological analysis of the $\cos 2 \phi $ azimuthal asymmetry in virtual photon plus jet production induced by the linear polarization of gluons in unpolarized $pA$ collisions. Although the linearly polarized gluon distribution becomes maximal at small $x$, TMD evolutionleads to a Sudakov suppression of the asymmetry with increasing invariant mass of the $\gamma^*$-jet pair. Employing a small-$x$ model input distribution, the asymmetry is found to be strongly suppressed under TMD evolution, but still remains sufficiently large to be measurable in the typical kinematical region accessible at RHIC or LHC at moderate photon virtuality, whereas it is expected to be negligible in $Z/W$-jet pair production at LHC. Read More

Monolayer transition metal dichalcogenides are uniquely-qualified materials for photonics because they combine well defined tunable direct band gaps and selfpassivated surfaces without dangling bonds. However, the atomic thickness of these 2D materials results in low photo absorption limiting the achievable photo luminescence intensity. Such emission can, in principle, be enhanced via nanoscale antennae resulting in; a. Read More

This paper is concerned about the lifespan estimate to the Cauchy problem of semilinear damped wave equations with the Fujita critical exponent in high dimensions$(n\geq 4)$. We establish the sharp upper bound of the lifespan in the following form \begin{equation}\nonumber\\ \begin{aligned} T(\varepsilon)\leq \exp(C\varepsilon^{-\frac 2n}), \end{aligned} \end{equation} by using the heat kernel as the test function. Read More

Maximum rank-distance (MRD) codes are extremal codes in the space of $m\times n$ matrices over a finite field, equipped with the rank metric. Up to generalizations, the classical examples of such codes were constructed in the 1970s and are today known as Gabidulin codes. Motivated by several recent approaches to construct MRD codes that are inequivalent to Gabidulin codes, we study the equivalence issue for Gabidulin codes themselves. Read More