Y. Y. Liu - Queen's University, Department of Physics, Engineering Physics & Astronomy, Kingston, ON K7L 3N6, Canada

Y. Y. Liu
Are you Y. Y. Liu?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Y. Y. Liu
Affiliation
Queen's University, Department of Physics, Engineering Physics & Astronomy, Kingston, ON K7L 3N6, Canada
City
Kingston
Country
Canada

Pubs By Year

External Links

Pub Categories

 
Computer Science - Information Theory (6)
 
Mathematics - Information Theory (6)
 
Physics - Materials Science (6)
 
Physics - Optics (5)
 
High Energy Physics - Experiment (4)
 
Mathematics - Analysis of PDEs (4)
 
Computer Science - Computation and Language (3)
 
Computer Science - Computer Vision and Pattern Recognition (3)
 
Physics - Mesoscopic Systems and Quantum Hall Effect (3)
 
Quantum Physics (3)
 
High Energy Physics - Phenomenology (2)
 
Physics - Chemical Physics (2)
 
Mathematics - Representation Theory (2)
 
High Energy Physics - Theory (2)
 
Mathematics - Optimization and Control (2)
 
Nuclear Theory (2)
 
Computer Science - Learning (1)
 
Statistics - Machine Learning (1)
 
Physics - Instrumentation and Detectors (1)
 
High Energy Physics - Lattice (1)
 
Mathematics - Category Theory (1)
 
Mathematics - Number Theory (1)
 
Physics - Physics and Society (1)
 
Nuclear Experiment (1)
 
Astrophysics of Galaxies (1)
 
Mathematics - Differential Geometry (1)
 
Mathematics - Numerical Analysis (1)
 
General Relativity and Quantum Cosmology (1)
 
Mathematics - Group Theory (1)
 
Computer Science - Robotics (1)
 
Solar and Stellar Astrophysics (1)
 
Earth and Planetary Astrophysics (1)
 
Instrumentation and Methods for Astrophysics (1)
 
Nonlinear Sciences - Pattern Formation and Solitons (1)
 
Physics - Plasma Physics (1)
 
Physics - Accelerator Physics (1)
 
Physics - Atomic and Molecular Clusters (1)

Publications Authored By Y. Y. Liu

The recent progress and development of deep generative models have led to remark- able improvements in research topics in computer vision and machine learning. In this paper, we address the task of cross-domain feature disentanglement. We advance the idea of unsupervised domain adaptation and propose to perform joint feature disentanglement and adaptation. Read More

We extend the $D4$-$D8$ holographic construction to include three chiral and one heavy flavor, to describe heavy-light baryons with strangeness and their exotics. At strong coupling, the heavy meson always binds to the bulk instanton in the form of a flavor zero mode in the fundamental representation. We quantize the ensuing bound states using the collective quantization method, to obtain the spectra of heavy and strange baryons with both explicit and hidden charm and bottom. Read More

Nonsymmorphic symmetries, which involve fractional lattice translations in crystalline materials, can generate exotic types of fermionic excitations that are robust against spin-orbit coupling. Here we report on a hourglass-type dispersion in the bulk of three-dimensional rhenium dioxide crystals, as dictated by its nonsymmorphic symmetries. Due to time reversal and inversion symmetries, each band has an additional two-fold degeneracy, making the neck crossing-point of the hourglass four-fold degenerate. Read More

The often elusive Poincar\'e recurrence can be witnessed in a completely separable system. For such systems, the problem of recurrence reduces to the classic mathematical problem of simultaneous Diophantine approximation of multiple numbers. The latter problem then can be somewhat satisfactorily solved by using the famous Lenstra-Lenstra-Lov\'{a}sz (LLL) algorithm, which is implemented in the Mathematica built-in function \verb"LatticeReduce". Read More

Beam dump experiments have been used to search for new particles, $\phi$, with null results interpreted in terms of limits on masses $m_\phi$ and coupling constants $\epsilon$. However these limits have been obtained by using approximations [including the Weizs\"{a}cker-Williams (WW) approximation] or Monte-Carlo simulations. We display methods to obtain the cross section and the resulting particle production rates without using approximations on the phase space integral or Monte-Carlo simulations. Read More

In this paper, we consider the inverse Galois problem with described inertia behavior. For a finite group $G$, one of its subgroups $I$ and a prime integer $p$, we ask whether or not $G$ and $I$ can be realized as the Galois group and the inertia subgroup at $p$ of an extension of $\mathbb{Q}$. We first discuss the result when $G$ is an abelian group. Read More

In this paper, the potential benefits of applying non-orthogonal multiple access (NOMA) technique in $K$-tier hybrid heterogeneous networks (HetNets) is explored. A promising new transmission framework is proposed, in which NOMA is adopted in small cells and massive multiple-input multiple-output (MIMO) is employed in macro cells. For maximizing the biased average received power for mobile users, a NOMA and massive MIMO based user association scheme is developed. Read More

We propose an efficient and accurate measure for ranking spreaders and identifying the influential ones in spreading processes in networks. While the edges determine the connections among the nodes, their specific role in spreading should be considered explicitly. An edge connecting nodes i and j may differ in its importance for spreading from i to j and from j to i. Read More

Interpreting deep neural networks can enable new applications for predictive modeling where both accuracy and interpretability are required. In this paper, we examine the underlying structure of a deep neural network to interpret the statistical interactions it captures. Our key observation is that any input features that interact with each other must follow strongly weighted connections to a common hidden unit before the final output. Read More

As a dedicated synthetic aperture radio interferometer, the MingantU SpEctral Radioheliograph (MUSER), initially known as the Chinese Spectral RadioHeliograph (CSRH), has entered the stage of routine observation. More than 23 million data records per day need to be effectively managed to provide high performance data query and retrieval for scientific data reduction. In light of these massive amounts of data generated by the MUSER, in this paper, a novel data management technique called the negative database (ND) is proposed and used to implement a data management system for the MUSER. Read More

Half-Heusler alloys have been one of the benchmark high temperature thermoelectric materials owing to their thermal stability and promising figure of merit ZT. Simonson et al. early showed that small amounts of vanadium doped in Hf0. Read More

The phase, amplitude, speed, and polarization, in addition to many other properties of light, can be modulated by photonic Bragg structures. In conjunction with nonlinearity and quantum effects, a variety of ensuing micro- or nano-photonic applications can be realized. This paper reviews various optical phenomena in several exemplary 1D Bragg gratings. Read More

Capacitively coupled radio-frequency (CCRF) CF_4 plasmas have been found to exhibit a self-organized striated structure at operating conditions, where the plasma is strongly electronegative and the ion-ion plasma in the bulk region (largely composed of CF_3^+ and F^- ions) resonates with the excitation frequency. In this work we explore the effects of the gas pressure, the RF voltage, and the electrode gap on this striated structure by Phase Resolved Optical Emission Spectroscopy and Particle-In-Cell/Monte Carlo Collisions simulations. The measured electronic excitation patterns at different external parameters show a good general agreement with the spatio-temporal plots of the ionization rate obtained from the simulations. Read More

The extraction system of CSNS mainly consists of two kinds of magnets: eight kickers and one lambertson magnet. In this paper, firstly, the magnetic test results of the eight kickers were introduced and then the filed uniformity and magnetizing relationship of the kickers were given. Secondly, during the beam commissioning in the future, in order to obtain more accurate magnetizing relationship, a new method to measure the magnetizing coefficients of the kickers by the real extraction beam was given and the data analysis would also be processed. Read More

OTS44 is one of only four free-floating planets known to have a disk. We have previously shown that it is the coolest and least massive known free-floating planet ($\sim$12 M$_{\rm Jup}$) with a substantial disk that is actively accreting. We have obtained Band 6 (233 GHz) ALMA continuum data of this very young disk-bearing object. Read More

In this paper, we consider the axisymmetric MHD system with nearly critical initial data having the special structure: $u_0=u_0^r e_r+\ut_0 e_\theta+u_0^z e_z, ~b_0=b_0^\theta e_\theta.$ We prove that, this system is global well-posed provided the scaling-invariant norms $\|r\ut_0\|_{L^\infty},~\|r^{-1} b^\theta_0\|_{L^{\frac32}}$ are sufficiently small. Read More

The low Mach number limit for one-dimensional non-isentropic compressible Navier-Stokes system without viscosity is investigated, where the density and temperature have different asymptotic states at far fields. It is proved that the solution of the system converges to a nonlinear diffusion wave globally in time as Mach number goes to zero. It is remarked that the velocity of diffusion wave is proportional with the variation of temperature. Read More

This paper studies the problem of accurately recovering a structured signal from a small number of corrupted sub-Gaussian measurements. We consider three different procedures to reconstruct signal and corruption when different kinds of prior knowledge are available. In each case, we provide conditions for stable signal recovery from structured corruption with added unstructured noise. Read More

Compressed sensing (CS) with prior information concerns the problem of reconstructing a sparse signal with the aid of a similar signal which is known beforehand. We consider a new approach to integrate the prior information into CS via maximizing the correlation between the prior knowledge and the desired signal. We then present a geometric analysis for the proposed method under sub-Gaussian measurements. Read More

Localized-surface plasmon resonance is of importance in both fundamental and applied physics for the subwavelength confinement of optical field, but realization of quantum coherent processes is confronted with challenges due to strong dissipation. Here we propose to engineer the electromagnetic environment of metallic nanoparticles (MNPs) using optical microcavities. An analytical quantum model is built to describe the MNP-microcavity interaction, revealing the significantly enhanced dipolar radiation and consequentially reduced Ohmic dissipation of the plasmonic modes. Read More

We propose a bosonic Josephson junction (BJJ) in two nonlinear mechanical resonator coupled through two-phonon exchange interaction induced by quadratic optomechanical couplings. The nonlinear dynamic equations and effective Hamiltonian are derived to describe behaviors of the BJJ. We show that the BJJ can work in two different dynamical regimes: Josephson oscillation and macroscopic self-trapping. Read More

This paper studies intersections of principal blocks of a finite group with respect to different primes. We first define the block graph of a finite group G, whose vertices are the prime divisors of |G| and there is an edge between two vertices p \ne q if and only if the principal p- and q-blocks of G have a nontrivial common complex irreducible character of G. Then we determine the block graphs of finite simple groups, which turn out to be complete except those of J_1 and J_4. Read More

In order to prevent loss of control (LOC) accidents, the real-time control performance monitoring (CPM) problem is studied for multicopters. Different from the existing literature, this paper does not try to monitor the performance of the controllers directly. Conversely, the unknown disturbances of the multicopter under off-nominal conditions are modeled and assessed. Read More

In this paper, we focus on learning structure-aware document representations from data without recourse to a discourse parser or additional annotations. Drawing inspiration from recent efforts to empower neural networks with a structural bias, we propose a model that can encode a document while automatically inducing rich structural dependencies. Specifically, we embed a differentiable non-projective parsing algorithm into a neural model and use attention mechanisms to incorporate the structural biases. Read More

Electrical currents in a magnetic insulator/heavy metal heterostructure can induce two simultaneous effects, namely, spin Hall magnetoresistance (SMR) on the heavy metal side and spin-orbit torques (SOTs) on the magnetic insulator side. Within the framework of the pure spin current model based on the bulk spin Hall effect (SHE), the ratio of the spin Hall-induced anomalous Hall effect (SH-AHE) to SMR should be equal to the ratio of the field-like torque (FLT) to damping-like torque (DLT). We perform a quantitative study of SMR, SH-AHE, and SOTs in a series of thulium iron garnet/platinum or Tm3Fe5O12/Pt heterostructures with different Tm3Fe5O12 thicknesses, where Tm3Fe5O12 is a ferrimagnetic insulator with perpendicular magnetic anisotropy. Read More

We study the thermodynamics and the chemical potential for a five-dimensional charged AdS black hole by treating the cosmological constant as the number of colors $N$ in the boundary gauge theory and its conjugate quantity as the associated chemical potential $\mu$. It is found that there exists a small-large black hole phase transition. The critical phenomena are investigated in the $N^{2}$-$\mu$ chart. Read More

Elucidating the interaction between magnetic moments and itinerant carriers is an important step to spintronic applications. Here, we investigate magnetic and transport properties in d0 ferromagnetic SiC single crystals prepared by postimplantation pulsed laser annealing. Magnetic moments are contributed by the p states of carbon atoms, but their magnetic circular dichroism is different from that in semi-insulating SiC samples. Read More

In \cite{FOY2014}, a sharp phase transition has been numerically observed when a constrained convex procedure is used to solve the corrupted sensing problem. In this paper, we present a theoretical analysis for this phenomenon. Specifically, we establish the threshold below which this convex procedure fails to recover signal and corruption with high probability. Read More

We construct a smooth axially symmetric solution to the classical one phase free boundary problem in $\mathbb{R}^{3}$. Its free boundary is of \textquotedblleft catenoid\textquotedblright\ type. This is a three dimensional analogy of the Hauswirth-Helein-Pacard solution in $\mathbb{R}% ^{2}$ (\cite{Pacard}). Read More

2017May
Authors: BESIII Collaboration, M. Ablikim, M. N. Achasov, S. Ahmed, M. Albrecht, M. Alekseev, A. Amoroso, F. F. An, Q. An, J. Z. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, Y. Ban, D. W. Bennett, J. V. Bennett, N. Berger, M. Bertani, D. Bettoni, J. M. Bian, F. Bianchi, E. Boger, I. Boyko, R. A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G. F. Cao, S. A. Cetin, J. Chai, J. F. Chang, G. Chelkov, G. Chen, H. S. Chen, J. C. Chen, M. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, X. K. Chu, G. Cibinetto, H. L. Dai, J. P. Dai, A. Dbeyssi, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, O. Dorjkhaidav, Z. L. Dou, S. X. Du, P. F. Duan, J. Fang, S. S. Fang, X. Fang, Y. Fang, R. Farinelli, L. Fava, S. Fegan, F. Feldbauer, G. Felici, C. Q. Feng, E. Fioravanti, M. Fritsch, C. D. Fu, Q. Gao, X. L. Gao, Y. Gao, Y. G. Gao, Z. Gao, B. Garillon, I. Garzia, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, M. H. Gu, S. Gu, Y. T. Gu, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, Z. Haddadi, S. Han, X. Q. Hao, F. A. Harris, K. L. He, X. Q. He, F. H. Heinsius, T. Held, Y. K. Heng, T. Holtmann, Z. L. Hou, C. Hu, H. M. Hu, T. Hu, Y. Hu, G. S. Huang, J. S. Huang, S. H. Huang, X. T. Huang, X. Z. Huang, Z. L. Huang, T. Hussain, W. Ikegami Andersson, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, X. S. Jiang, X. Y. Jiang, J. B. Jiao, Z. Jiao, D. P. Jin, S. Jin, Y. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X. L. Kang, X. S. Kang, M. Kavatsyuk, B. C. Ke, T. Khan, A. Khoukaz, P. Kiese, R. Kliemt, L. Koch, O. B. Kolcu, B. Kopf, M. Kornicer, M. Kuemmel, M. Kuhlmann, A. Kupsc, W. Kühn, J. S. Lange, M. Lara, P. Larin, L. Lavezzi, H. Leithoff, C. Leng, C. Li, Cheng Li, D. M. Li, F. Li, F. Y. Li, G. Li, H. B. Li, H. J. Li, J. C. Li, Jin Li, K. Li, K. Li, K. J. Li, Lei Li, P. L. Li, P. R. Li, Q. Y. Li, T. Li, W. D. Li, W. G. Li, X. L. Li, X. N. Li, X. Q. Li, Z. B. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, D. X. Lin, B. Liu, B. J. Liu, C. X. Liu, D. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. H. Liu, H. H. Liu, H. M. Liu, J. B. Liu, J. Y. Liu, K. Liu, K. Y. Liu, Ke Liu, L. D. Liu, P. L. Liu, Q. Liu, S. B. Liu, X. Liu, Y. B. Liu, Z. A. Liu, Zhiqing Liu, Y. F. Long, X. C. Lou, H. J. Lu, J. G. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, X. L. Luo, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, T. Ma, X. N. Ma, X. Y. Ma, Y. M. Ma, F. E. Maas, M. Maggiora, Q. A. Malik, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, J. Min, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, C. Morales Morales, G. Morello, N. Yu. Muchnoi, H. Muramatsu, A. Mustafa, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Niu, X. Y. Niu, S. L. Olsen, Q. Ouyang, S. Pacetti, Y. Pan, M. Papenbrock, P. Patteri, M. Pelizaeus, J. Pellegrino, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, A. Pitka, R. Poling, V. Prasad, H. R. Qi, M. Qi, T. . Y. Qi, S. Qian, C. F. Qiao, N. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, K. H. Rashid, C. F. Redmer, M. Richter, M. Ripka, M. Rolo, G. Rong, Ch. Rosner, A. Sarantsev, M. Savrié, C. Schnier, K. Schoenning, W. Shan, M. Shao, C. P. Shen, P. X. Shen, X. Y. Shen, H. Y. Sheng, M. R. Shepherd, J. J. Song, W. M. Song, X. Y. Song, S. Sosio, C. Sowa, S. Spataro, G. X. Sun, J. F. Sun, L. Sun, S. S. Sun, X. H. Sun, Y. J. Sun, Y. K Sun, Y. Z. Sun, Z. J. Sun, Z. T. Sun, C. J. Tang, G. Y. Tang, X. Tang, I. Tapan, M. Tiemens, B. T. Tsednee, I. Uman, G. S. Varner, B. Wang, B. L. Wang, D. Wang, D. Y. Wang, Dan Wang, K. Wang, L. L. Wang, L. S. Wang, M. Wang, P. Wang, P. L. Wang, W. P. Wang, X. F. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Z. Wang, Z. G. Wang, Z. H. Wang, Z. Y. Wang, Z. Y. Wang, T. Weber, D. H. Wei, J. H. Wei, P. Weidenkaff, S. P. Wen, U. Wiedner, M. Wolke, L. H. Wu, L. J. Wu, Z. Wu, L. Xia, Y. Xia, D. Xiao, H. Xiao, Y. J. Xiao, Z. J. Xiao, X. H. Xie, Y. G. Xie, Y. H. Xie, X. A. Xiong, Q. L. Xiu, G. F. Xu, J. J. Xu, L. Xu, Q. J. Xu, Q. N. Xu, X. P. Xu, L. Yan, W. B. Yan, W. C. Yan, Y. H. Yan, H. J. Yang, H. X. Yang, L. Yang, Y. H. Yang, Y. X. Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, J. S. Yu, C. Z. Yuan, Y. Yuan, A. Yuncu, A. A. Zafar, Y. Zeng, Z. Zeng, B. X. Zhang, B. Y. Zhang, C. C. Zhang, D. H. Zhang, H. H. Zhang, H. Y. Zhang, J. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, K. Zhang, L. Zhang, S. Q. Zhang, X. Y. Zhang, Y. Zhang, Y. Zhang, Y. H. Zhang, Y. T. Zhang, Yu Zhang, Z. H. Zhang, Z. P. Zhang, Z. Y. Zhang, G. Zhao, J. W. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, S. J. Zhao, T. C. Zhao, Y. B. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, W. J. Zheng, Y. H. Zheng, B. Zhong, L. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, J. Zhu, K. Zhu, K. J. Zhu, S. Zhu, S. H. Zhu, X. L. Zhu, Y. C. Zhu, Y. S. Zhu, Z. A. Zhu, J. Zhuang, B. S. Zou, J. H. Zou

We present first evidence for the process $e^+e^-\to \gamma\eta_c(1S)$ at six center-of-mass energies between 4.01 and 4.60~GeV using data collected by the BESIII experiment operating at BEPCII. Read More

Rate-compatible error-correcting codes (ECCs), which consist of a set of extended codes, are of practical interest in both wireless communications and data storage. In this work, we first study the lower bounds for rate-compatible ECCs, thus proving the existence of good rate-compatible codes. Then, we propose a general framework for constructing rate-compatible ECCs based on cosets and syndromes of a set of nested linear codes. Read More

In this article, we investigate the determination of the spatial component in the time-dependent second order coefficient of a hyperbolic equation from both theoretical and numerical aspects. By the Carleman estimates for general hyperbolic operators and an auxiliary Carleman estimate, we establish local H\"older stability with both partial boundary and interior measurements under certain geometrical conditions. For numerical reconstruction, we minimize a Tikhonov functional which penalizes the gradient of the unknown function. Read More

Multicomponent nanoparticles can be synthesized with either homogeneous or phase-segregated architectures depending on the synthesis conditions and elements incorporated. To understand the parameters that determine their structural fate, multicomponent metal-oxide nanoparticles consisting of combinations of Co, Ni, and Cu were synthesized via scanning probe block copolymer lithography and characterized using correlated electron microscopy. These studies revealed that the miscibility, ratio of the metallic components, and the synthesis temperature determine the crystal structure and architecture of the nanoparticles. Read More

We report on the Doppler-free saturation spectroscopy of the nitrous oxide (N$_2$O) overtone transition at 1.28~$\mu$m. This measurement is performed by the noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) technique based on the quantum-dot (QD) laser. Read More

We investigate the problem of stochastic network optimization in the presence of imperfect state prediction and non-stationarity. Based on a novel distribution-accuracy curve prediction model, we develop the predictive learning-aided control (PLC) algorithm, which jointly utilizes historic and predicted network state information for decision making. PLC is an online algorithm that requires zero a-prior system statistical information, and consists of three key components, namely sequential distribution estimation and change detection, dual learning, and online queue-based control. Read More

The CALICE collaboration is developing highly granular calorimeters for experiments at a future lepton collider primarily to establish technologies for particle flow event reconstruction. These technologies also find applications elsewhere, such as detector upgrades for the LHC. Meanwhile, the large data sets collected in an extensive series of beam tests have enabled detailed studies of the properties of hadronic showers in calorimeter systems, resulting in improved simulation models and development of sophisticated reconstruction techniques. Read More

We develop a novel deep contour detection algorithm with a top-down fully convolutional encoder-decoder network. Our proposed method, named TD-CEDN, solves two important issues in this low-level vision problem: (1) learning multi-scale and multi-level features; and (2) applying an effective top-down refined approach in the networks. TD-CEDN performs the pixel-wise prediction by means of leveraging features at all layers of the net. Read More

2017May
Authors: M. Ablikim, M. N. Achasov, X. C. Ai, O. Albayrak, M. Albrecht, D. J. Ambrose, A. Amoroso, F. F. An, Q. An, J. Z. Bai, R. Baldini Ferroli, Y. Ban, D. W. Bennett, J. V. Bennett, M. Bertani, D. Bettoni, J. M. Bian, F. Bianchi, E. Boger, I. Boyko, R. A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G. F. Cao, S. A. Cetin, J. F. Chang, G. Chelkov, G. Chen, H. S. Chen, H. Y. Chen, J. C. Chen, M. L. Chen, S. J. Chen, X. Chen, X. R. Chen, Y. B. Chen, H. P. Cheng, X. K. Chu, G. Cibinetto, H. L. Dai, J. P. Dai, A. Dbeyssi, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, S. X. Du, P. F. Duan, E. E. Eren, J. Z. Fan, J. Fang, S. S. Fang, X. Fang, Y. Fang, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, E. Fioravanti, M. Fritsch, C. D. Fu, Q. Gao, X. Y. Gao, Y. Gao, Z. Gao, I. Garzia, C. Geng, K. Goetzen, W. X. Gong, W. Gradl, M. Greco, M. H. Gu, Y. T. Gu, Y. H. Guan, A. Q. Guo, L. B. Guo, Y. Guo, Y. P. Guo, Z. Haddadi, A. Hafner, S. Han, Y. L. Han, X. Q. Hao, F. A. Harris, K. L. He, Z. Y. He, T. Held, Y. K. Heng, Z. L. Hou, C. Hu, H. M. Hu, J. F. Hu, T. Hu, Y. Hu, G. M. Huang, G. S. Huang, H. P. Huang, J. S. Huang, X. T. Huang, Y. Huang, T. Hussain, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, L. L. Jiang, L. W. Jiang, X. S. Jiang, X. Y. Jiang, J. B. Jiao, Z. Jiao, D. P. Jin, S. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X. L. Kang, X. S. Kang, M. Kavatsyuk, B. C. Ke, P. Kiese, R. Kliemt, B. Kloss, O. B. Kolcu, B. Kopf, M. Kornicer, W. Kuehn, A. Kupsc, J. S. Lange, M. Lara, P. Larin, C. Leng, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. B. Li, J. C. Li, Jin Li, K. Li, K. Li, Lei Li, P. R. Li, T. Li, W. D. Li, W. G. Li, X. L. Li, X. M. Li, X. N. Li, X. Q. Li, Z. B. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, D. X. Lin, B. J. Liu, C. X. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. H. Liu, H. H. Liu, H. M. Liu, J. Liu, J. B. Liu, J. P. Liu, J. Y. Liu, K. Liu, K. Y. Liu, L. D. Liu, P. L. Liu, Q. Liu, S. B. Liu, X. Liu, X. X. Liu, Y. B. Liu, Z. A. Liu, Zhiqiang Liu, Zhiqing Liu, H. Loehner, X. C. Lou, H. J. Lu, J. G. Lu, R. Q. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, T. Luo, X. L. Luo, M. Lv, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, Q. M. Ma, T. Ma, X. N. Ma, X. Y. Ma, F. E. Maas, M. Maggiora, Y. J. Mao, Z. P. Mao, S. Marcello, J. G. Messchendorp, J. Min, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, C. Morales Morales, K. Moriya, N. Yu. Muchnoi, H. Muramatsu, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Niu, X. Y. Niu, S. L. Olsen, Q. Ouyang, S. Pacetti, P. Patteri, M. Pelizaeus, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, R. Poling, V. Prasad, Y. N. Pu, M. Qi, S. Qian, C. F. Qiao, L. Q. Qin, N. Qin, X. S. Qin, Y. Qin, Z. H. Qin, J. F. Qiu, K. H. Rashid, C. F. Redmer, H. L. Ren, M. Ripka, G. Rong, Ch. Rosner, X. D. Ruan, V. Santoro, A. Sarantsev, M. Savrié, K. Schoenning, S. Schumann, W. Shan, M. Shao, C. P. Shen, P. X. Shen, X. Y. Shen, H. Y. Sheng, W. M. Song, X. Y. Song, S. Sosio, S. Spataro, G. X. Sun, J. F. Sun, S. S. Sun, Y. J. Sun, Y. Z. Sun, Z. J. Sun, Z. T. Sun, C. J. Tang, X. Tang, I. Tapan, E. H. Thorndike, M. Tiemens, M. Ullrich, I. Uman, G. S. Varner, B. Wang, B. L. Wang, D. Wang, D. Y. Wang, K. Wang, L. L. Wang, L. S. Wang, M. Wang, P. Wang, P. L. Wang, S. G. Wang, W. Wang, X. F. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Z. Wang, Z. G. Wang, Z. H. Wang, Z. Y. Wang, T. Weber, D. H. Wei, J. B. Wei, P. Weidenkaff, S. P. Wen, U. Wiedner, M. Wolke, L. H. Wu, Z. Wu, L. G. Xia, Y. Xia, D. Xiao, H. Xiao, Z. J. Xiao, Y. G. Xie, Q. L. Xiu, G. F. Xu, L. Xu, Q. J. Xu, Q. N. Xu, X. P. Xu, L. Yan, W. B. Yan, W. C. Yan, Y. H. Yan, H. J. Yang, H. X. Yang, L. Yang, Y. Yang, Y. X. Yang, H. Ye, M. Ye, M. H. Ye, J. H. Yin, B. X. Yu, C. X. Yu, H. W. Yu, J. S. Yu, C. Z. Yuan, W. L. Yuan, Y. Yuan, A. Yuncu, A. A. Zafar, A. Zallo, Y. Zeng, B. X. Zhang, B. Y. Zhang, C. Zhang, C. C. Zhang, D. H. Zhang, H. H. Zhang, H. Y. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, K. Zhang, L. Zhang, S. H. Zhang, X. Y. Zhang, Y. Zhang, Y. N. Zhang, Y. H. Zhang, Y. T. Zhang, Yu Zhang, Z. H. Zhang, Z. P. Zhang, Z. Y. Zhang, G. Zhao, J. W. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, Q. W. Zhao, S. J. Zhao, T. C. Zhao, Y. B. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, W. J. Zheng, Y. H. Zheng, B. Zhong, L. Zhou, Li Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, K. Zhu, K. J. Zhu, S. Zhu, X. L. Zhu, Y. C. Zhu, Y. S. Zhu, Z. A. Zhu, J. Zhuang, L. Zotti, B. S. Zou, J. H. Zou

Using a data set of 2.93 fb$^{-1}$ taken at a center-of-mass energy $\sqrt{s}$ = 3.773 GeV with the BESIII detector at the BEPCII collider, we perform a search for an extra U(1) gauge boson, also denoted as a dark photon. Read More

Consider the problem of choosing a set of actions to optimize an objective function that is a real-valued polymatroid set function subject to matroid constraints. The greedy strategy provides an approximate solution to the optimization problem; the strategy starts with the empty set and iteratively adds an element to the current solution set with the largest gain in the objective function while satisfying the matroid constraints. The greedy strategy is known to achieve at least a factor of $1/(1+c)$ of the maximal objective function value for a general matroid and a factor of $(1-(1-{c}/{K})^K)/c$ for a uniform matroid with rank $K$, where $c$ is the total curvature of the objective function. Read More

Semantic parsing has emerged as a significant and powerful paradigm for natural language interface and question answering systems. Traditional methods of building a semantic parser rely on high-quality lexicons, hand-crafted grammars and linguistic features which are limited by applied domain or representation. In this paper, we propose a general approach to learn from denotations based on Seq2Seq model augmented with attention mechanism. Read More

This paper investigates the application of non-orthogonal multiple access (NOMA) in millimeter wave (mmWave) communications by exploiting beamforming, user scheduling and power allocation. Random beamforming is invoked for reducing the feedback overhead of considered systems. A nonconvex optimization problem for maximizing the sum rate is formulated, which is proved to be NP-hard. Read More

We demonstrated a 2D helical chiral metamaterial that exhibits broadband strong optical activity resulting nonresonant Drude-like response. The strong chirality leads to broadband negative refractive index with high figure of merit (>90) and extremely low loss (<2% per layer). The optical activity are insensitive to the angles of incident electromagnetic waves, thereby enabling more flexibility in polarization manipulation applicaitons. Read More

In this paper, we propose a model to analyze sentiment of online stock forum and use the information to predict the stock volatility in the Chinese market. We have labeled the sentiment of the online financial posts and make the dataset public available for research. By generating a sentimental dictionary based on financial terms, we develop a model to compute the sentimental score of each online post related to a particular stock. Read More

Recently, realistic image generation using deep neural networks has become a hot topic in machine learning and computer vision. Images can be generated at the pixel level by learning from a large collection of images. Learning to generate colorful cartoon images from black-and-white sketches is not only an interesting research problem, but also a potential application in digital entertainment. Read More

Nodal loop appears when two bands, typically one electron-like and one hole-like, are crossing each other linearly along a one-dimensional manifold in the reciprocal space. Here we propose a new type of nodal loop which emerges from crossing between two bands which are both electron-like (or hole-like) along certain direction. Close to any point on such loop (dubbed as a type-II nodal loop), the linear spectrum is strongly tilted and tipped over along one transverse direction, leading to marked differences in magnetic, optical, and transport responses compared with the conventional (type-I) nodal loops. Read More

For highly interested organolead perovskite based solar cells, the photoproducts are regarded as the co-existed exciton and free carriers. In this study, we carefully re-examined this conclusion with our recently developed density-resolved spectroscopic method. Heat-annealing related two photoproduct systems are observed. Read More

While end-to-end neural machine translation (NMT) has made remarkable progress recently, it still suffers from the data scarcity problem for low-resource language pairs and domains. In this paper, we propose a method for zero-resource NMT by assuming that parallel sentences have close probabilities of generating a sentence in a third language. Based on this assumption, our method is able to train a source-to-target NMT model ("student") without parallel corpora available, guided by an existing pivot-to-target NMT model ("teacher") on a source-pivot parallel corpus. Read More

We propose and fabricate a dual-emitter light-induced neuromorphic device composed of two light-induced devices with a common collector and base. Two InGaN multiple quantum well diodes (MQW-diodes) are used as the emitters to generate light, and one InGaN MQW-diode is used as the common collector to absorb the emitted light. When the presynaptic voltages are synchronously applied to the two emitters, the collector demonstrates an adding together of the excitatory post synaptic voltage (EPSV). Read More

We study localizations of an extriangulated category B and localizations of hearts of twin cotorsion pairs on B. We also give a generalized nearly Morita equivalence between the certain localizations of hearts of cotorsion pairs. Read More

In this paper, we present techniques and examples to reduce power consumption and increase energy efficiency of autonomous wireless sensor nodes for the Internet of Things. We focus on RF energy harvesting and data transfer, all of which have a large impact on the device cost, lifetime and functionality. We explore the co-design of antenna and electronics to increase RF-DC conversion and efficiency and to improve the performance of the LNA. Read More