Y. V. Khotyaintsev

Y. V. Khotyaintsev
Are you Y. V. Khotyaintsev?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Y. V. Khotyaintsev
Affiliation
Location

Pubs By Year

Pub Categories

 
Physics - Plasma Physics (5)
 
Physics - Space Physics (5)
 
Solar and Stellar Astrophysics (1)
 
Earth and Planetary Astrophysics (1)

Publications Authored By Y. V. Khotyaintsev

MMS observations recently confirmed that crescent-shaped electron velocity distributions in the plane perpendicular to the magnetic field occur in the electron diffusion region near reconnection sites at Earth's magnetopause. In this paper, we re-examine the origin of the crescent-shaped distributions in the light of our new finding that ions and electrons are drifting in opposite directions when displayed in magnetopause boundary-normal coordinates. Therefore, ExB drifts cannot cause the crescent shapes. Read More

We report the observations of an electron vortex magnetic hole corresponding to a new type of coherent structures in the magnetosheath turbulent plasma using the Magnetospheric Multiscale (MMS) mission data. The magnetic hole is characterized by a magnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the center of the magnetic hole and a peak in the outer region of the magnetic hole. Read More

The relationship between magnetic reconnection and plasma turbulence is investigated using multipoint in-situ measurements from the Cluster spacecraft within a high-speed reconnection jet in the terrestrial magnetotail. We show explicitly that work done by electromagnetic fields on the particles, $\mathbf{J}\cdot\mathbf{E}$, has a non-Gaussian distribution and is concentrated in regions of high electric current density. Hence, magnetic energy is converted to kinetic energy in an intermittent manner. Read More

The anisotropic nature of solar wind magnetic turbulence fluctuations is investigated scale-by-scale using high cadence in-situ magnetic field measurements from the Cluster and ACE spacecraft missions. The data span five decades in scales from the inertial range to the electron Larmor radius. In contrast to the inertial range, there is a successive increase towards isotropy between parallel and transverse power at scales below the ion Larmor radius, with isotropy being achieved at the electron Larmor radius. Read More

A higher-order multiscale analysis of the dissipation range of collisionless plasma turbulence is presented using in-situ high-frequency magnetic field measurements from the Cluster spacecraft in a stationary interval of fast ambient solar wind. The observations, spanning five decades in temporal scales, show a crossover from multifractal intermittent turbulence in the inertial range to non-Gaussian monoscaling in the dissipation range. This presents a strong observational constraint on theories of dissipation mechanisms in turbulent collisionless plasmas. Read More