# Xin Wang - CCNU & LBNL

## Contact Details

NameXin Wang |
||

AffiliationCCNU & LBNL |
||

Location |
||

## Pubs By Year |
||

## Pub CategoriesQuantum Physics (10) High Energy Physics - Phenomenology (8) Nuclear Theory (8) Computer Science - Learning (7) Physics - Mesoscopic Systems and Quantum Hall Effect (5) Astrophysics of Galaxies (4) Statistics - Machine Learning (3) Computer Science - Computer Vision and Pattern Recognition (3) Mathematics - Information Theory (3) Computer Science - Information Theory (3) Cosmology and Nongalactic Astrophysics (2) Mathematics - Algebraic Geometry (2) Computer Science - Networking and Internet Architecture (2) Computer Science - Distributed; Parallel; and Cluster Computing (2) Nuclear Experiment (2) Solar and Stellar Astrophysics (1) Physics - Space Physics (1) Computer Science - Cryptography and Security (1) Computer Science - Operating Systems (1) Mathematics - Optimization and Control (1) Physics - Superconductivity (1) High Energy Physics - Theory (1) Computer Science - Sound (1) High Energy Astrophysical Phenomena (1) Physics - Materials Science (1) Quantitative Biology - Populations and Evolution (1) Quantitative Biology - Cell Behavior (1) High Energy Physics - Experiment (1) Computer Science - Computer Science and Game Theory (1) Physics - Biological Physics (1) General Relativity and Quantum Cosmology (1) Mathematics - Combinatorics (1) |

## Publications Authored By Xin Wang

**Category:**Quantum Physics

Broadcasting quantum and classical information is a basic task in quantum information processing, and is also a useful model in the study of quantum correlations including quantum discord. We establish a full operational characterization of two-sided quantum discord in terms of bilocal broadcasting of quantum correlations. Moreover, we show that both the optimal fidelity of unilocal broadcasting of the correlations in an arbitrary bipartite quantum state and that of broadcasting an arbitrary set of quantum states can be formulized as semidefinite programs (SDPs), which are efficiently computable. Read More

**Authors:**JETSCAPE Collaboration, Shanshan Cao, Chanwook Park, R. Alex Barbieri, Steffen A. Bass, Dennis Bazow, Jonah Bernhard, Jacob Coleman, Rainer Fries, Charles Gale, Yayun He, Ulrich Heinz, Barbara V. Jacak, Peter M. Jacobs, Sangyong Jeon, Michael Kordell II, Amit Kumar, Tan Luo, Abhijit Majumder, Younes Nejahi, Daniel Pablos, Long-Gang Pang, Joern H. Putschke, Gunther Roland, Steven Rose, Björn Schenke, Loren Schwiebert, Chun Shen, Chathuranga Sirimanna, Ron A. Soltz, Dragos Velicanu, Gojko Vujanovic, Xin-Nian Wang, Robert L. Wolpert

The modification of hard jets in an extended static medium held at a fixed temperature is studied using three different Monte-Carlo event generators (LBT, MATTER, MARTINI). Each event generator contains a different set of assumptions regarding the energy and virtuality of the partons within a jet versus the energy scale of the medium, and hence, applies to a different epoch in the space-time history of the jet evolution. For the first time, modeling is developed where a jet may sequentially transition from one generator to the next, on a parton-by-parton level, providing a detailed simulation of the space-time evolution of medium modified jets over a much broader dynamic range than has been attempted previously in a single calculation. Read More

It has been recently demonstrated that a singlet-triplet spin qubit in semiconductor double quantum dots can be controlled by changing the height of the potential barrier between the two dots ("barrier control"), which has led to a considerable reduction of charge noises as compared to the traditional tilt control method. In this paper we show, through a molecular-orbital-theoretic calculation of double quantum dots influenced by a charged impurity, that the relative charge noise for a system under the barrier control not only is smaller than that for the tilt control, but actually decreases as a function of an increasing exchange interaction. This is understood as a combined consequence of the greatly suppressed detuning noise when the two dots are symmetrically operated, as well as an enhancement of the inter-dot hopping energy of an electron when the barrier is lowered which in turn reduces the relative charge noise at large exchange interaction values. Read More

Traditionally, Internet Access Providers (APs) only charge end-users for Internet access services; however, to recoup infrastructure costs and increase revenues, some APs have recently adopted two-sided pricing schemes under which both end-users and content providers are charged. Meanwhile, with the rapid growth of traffic, network congestion could seriously degrade user experiences and influence providers' utility. To optimize profit and social welfare, APs and regulators need to design appropriate pricing strategies and regulatory policies that take the effects of network congestion into consideration. Read More

Coupled Linear Boltzmann Transport and hydrodynamics (CoLBT-hydro) is developed for simultaneous and event-by-event simulations of jet transport and jet-induced medium excitation in high-energy heavy-ion collisions. This is made possible by a GPU parallelized (3+1)D hydrodynamics that has a source term from the energy-momentum deposition by propagating jet shower partons and provides real time update of the bulk medium evolution for subsequent jet transport. Hadron spectra in $\gamma$-jet events of Au+Au collisions at RHIC are calculated for the first time that include hadrons from both the modified jet and jet-induced medium excitation. Read More

We compute the fermion spin distribution in the vortical fluid created in off-central high-energy heavy-ion collisions. We employ the event-by-event (3+1)D viscous hydrodynamic model. The spin polarization density is proportional to the local fluid vorticity in quantum kinetic theory. Read More

For any genus g \leq 26, and for n \leq 3 in all genus, we prove that every degree-g polynomial in the psi-classes on Mbar_{g,n} can be expressed as a sum of tautological classes supported on the boundary with no kappa-classes. Such equations, which we refer to as topological recursion relations, can be used to deduce universal equations for the Gromov-Witten invariants of any target. Read More

In this paper, we report a significant recovery of the linear baryonic acoustic oscillation (BAO) signature by applying the isobaric reconstruction algorithm to the non-linear matter density field. Assuming only the longitudinal component of the displacement being cosmologically relevant, this algorithm iteratively solves the coordinate transform between the Lagrangian and Eulerian frames without requiring any specific knowledge of the dynamics. For dark matter field, it produces the non-linear displacement potential with very high fidelity. Read More

A classic problem in microbiology is that bacteria display two types of growth behavior when cultured on a mixture of two carbon sources: in certain mixtures the bacteria consume the two carbon sources sequentially (diauxie) and in other mixtures the bacteria consume both sources simultaneously (co-utilization). The search for the molecular mechanism of diauxie led to the discovery of the lac operon and gene regulation in general. However, why microbes would bother to have different strategies of taking up nutrients remained a mystery. Read More

Background: Guillain-Barr\'e Syndrome (GBS) is a common type of severe acute paralytic neuropathy and associated with other virus infections such as dengue fever and Zika. This study investigate the relationship between GBS, dengue, local meteorological factors in Hong Kong and global climatic factors from January 2000 to June 2016. Methods: The correlations between GBS, dengue, Multivariate El Nino Southern Oscillation Index (MEI) and local meteorological data were explored by the Spearman Rank correlations and cross-correlations between these time series. Read More

The Linear Boltzmann Transport (LBT) model coupled to hydrodynamical background is extended to include transport of both light partons and heavy quarks through the quark-gluon plasma (QGP) in high-energy heavy-ion collisions. The LBT model includes both elastic and inelastic medium-interaction of both primary jet shower partons and thermal recoil partons within perturbative QCD (pQCD). It is shown to simultaneously describe the experimental data on heavy and light flavor hadron suppression in high-energy heavy-ion collisions for different centralities at RHIC and LHC energies. Read More

Nano-polycrystalline diamond (NPD) and nanotwinned diamond (NtD) were successfully synthesized in multi-anvil high pressure apparatus at high pressure and high temperature (HPHT) conditions using precursors of onion carbons. We found that the choices of distinct onion carbons with hollow or multi-cored microstructures lead to the synthesis of different diamond products of NPD or NtD ones. High quality NtD with an average twin size of 6. Read More

The CIII] and CIV rest-frame UV emission lines are powerful probes of the ionizations states of galaxies. They have furthermore been suggested as alternatives for spectroscopic redshift confirmation of objects at the epoch of reionization ($z>6$), where the most frequently used redshift indicator, Ly$\alpha$, is attenuated by the high fraction of neutral hydrogen in the inter-galactic medium. However, currently only very few confirmations of carbon UV lines at these high redshifts exist, making it challenging to quantify these claims. Read More

Integrating mobile-edge computing (MEC) and wireless power transfer (WPT) is a promising technique in the Internet of Things (IoT) era. It can provide massive lowpower mobile devices with enhanced computation capability and sustainable energy supply. In this paper, we consider a wireless powered multiuser MEC system, where a multi-antenna access point (AP) (integrated with an MEC server) broadcasts wireless power to charge multiple users and each user node relies on the harvested energy to execute latency-sensitive computation tasks. Read More

A bipartite subspace $S$ is called strongly positive-partial-transpose-unextendible (PPT-unextendible) if for every positive integer $k$, there is no PPT operator supporting on the orthogonal complement of $S^{\otimes k}$. We show that a subspace is strongly PPT-unextendible if it contains a PPT-definite operator (a positive semidefinite operator whose partial transpose is positive definite). Based on these, we are able to propose a simple criterion for verifying whether a set of bipartite orthogonal quantum states is indistinguishable by PPT operations in the many copy scenario. Read More

In this paper we introduce a fully end-to-end approach for visual tracking in videos that learns to predict the bounding box locations of a target object at every frame. An important insight is that the tracking problem can be considered as a sequential decision-making process and historical semantics encode highly relevant information for future decisions. Based on this intuition, we formulate our model as a recurrent convolutional neural network agent that interacts with a video overtime, and our model can be trained with reinforcement learning (RL) algorithms to learn good tracking policies that pay attention to continuous, inter-frame correlation and maximize tracking performance in the long run. Read More

First calculated results with the new HIJING++ are presented for identified hadron production in high-energy heavy ion collisions. The recently developed HIJING++ version is based on the latest version of PYTHIA8 and contains all the nuclear effects has been included in the HIJING2.552, which will be improved by a new version of the shadowing parametrization and jet quenching module. Read More

From the basic concepts of general relativity, we investigate the rotation of the polarization angle by a moving gravitational lens. Particularly, we clarify the existing confusion in the literature by showing and explaining why such rotation must explicitly depend on the relative motion between the observer and the lens. We update the prediction of such effect on the double pulsar PSR J0737-3039 and estimate a rotation angle of $\sim 10^{-7}rad$. Read More

As Internet applications have become more diverse in recent years, users having heavy demand for online video services are more willing to pay higher prices for better services than light users that mainly use e-mails and instant messages. This encourages the Internet Service Providers (ISPs) to explore service differentiations so as to optimize their profits and allocation of network resources. Much prior work has focused on the viability of network service differentiation by comparing with the case of a single-class service. Read More

Decoherence due to charge noise is one of the central challenges in using spin qubits in semiconductor quantum dots as a platform for quantum information processing. Recently, it has been experimentally demonstrated in both Si and GaAs singlet-triplet qubits that the effects of charge noise can be suppressed if qubit operations are implemented using symmetric barrier control instead of the standard tilt control. Here, we investigate the key issue of whether the benefits of barrier control persist over the entire set of single-qubit gates by performing randomized benchmarking simulations. Read More

Phonon-cavity electromechanics allows the manipulation of mechanical oscillations similar to photon-cavity systems. Many advances on this subject have been achieved in various materials. In addition, the coherent phonon transfer (phonon Rabi oscillations) between the phonon cavity mode and another oscillation mode has attracted many interest in nano-science. Read More

Let $K=\{k_1,k_2,\ldots,k_r\}$ and $L=\{l_1,l_2,\ldots,l_s\}$ be disjoint subsets of $\{0,1,\ldots,p-1\}$, where $p$ is a prime and $A=\{A_1,A_2,\ldots,A_m\}$ be a family of subsets of $[n]$ such that $|A_i|\pmod{p}\in K$ for all $A_i\in A$ and $|A_i\cap A_j|\pmod{p}\in L$ for $i\ne j$. In 1991, Alon, Babai and Suzuki conjectured that if $n\geq s+\max_{1\leq i\leq r} k_i$, then $|A|\leq {n\choose s}+{n\choose s-1}+\cdots+{n\choose s-r+1}$. In 2000, Qian and Ray-Chaudhuri proved the conjecture under the condition $n\geq 2s-r$. Read More

Carbon nanotubes (CNTs) have attracted much attention for use in nanomechanical devices because of their exceptional properties, such as large resonant frequencies, low mass, and high quality factors. Here, we report the first experimental realization of parametric strong coupling between two mechanical modes on a single CNT nanomechanical resonator, by applying an extra microwave pump. This parametric pump method can be used to couple mechanical modes with arbitrary frequency differences. Read More

Correntropy is a second order statistical measure in kernel space, which has been successfully applied in robust learning and signal processing. In this paper, we define a nonsecond order statistical measure in kernel space, called the kernel mean-p power error (KMPE), including the correntropic loss (CLoss) as a special case. Some basic properties of KMPE are presented. Read More

We study the problem of transforming a tripartite state to a bipartite one using stochastic local operations and classical communication (SLOCC). It is known that the one-shot tripartite-to-bipartite SLOCC convertibility is completely determined by the maximal Schmidt rank of the given tripartite state, i.e. Read More

**Affiliations:**

^{1}CITA

**Category:**Cosmology and Nongalactic Astrophysics

In the study of the large-scale structure (LSS), it is challenging to describe all relevant physical processes, so it is appealing to develop some effective approach that best represents the original system. Particularly, since we are only interested in the statistical properties instead of specific realizations in LSS, with a given evolution history of the probability density function (PDF), there could exist alternative dynamical system that obeys the exact same PDF evolution, which we will name as the statistical equivalence principle. This PDF equation is expressed as a kinetic theory of all relevant degree of freedoms, and as a first order partial differential equation, it could be solved by the method of characteristics. Read More

Supervised learning with a deep convolutional neural network is used to identify the QCD equation of state (EoS) employed in relativistic hydrodynamic simulations of heavy-ion collisions. The final-state particle spectra $\rho(p_T,\Phi)$ provide directly accessible information from experiments. High-level correlations of $\rho(p_T,\Phi)$ learned by the neural network act as an "EoS-meter", effective in detecting the nature of the QCD transition. Read More

Machine learning is being deployed in a growing number of applications which demand real-time, accurate, and robust predictions under heavy query load. However, most machine learning frameworks and systems only address model training and not deployment. In this paper, we introduce Clipper, a general-purpose low-latency prediction serving system. Read More

**Authors:**Ioannis Papavasileiou

^{1}, Wenlong Zhang

^{2}, Xin Wang

^{3}, Jinbo Bi

^{4}, Li Zhang

^{5}, Song Han

^{6}

**Affiliations:**

^{1}University of Connecticut,

^{2}Arizona State University,

^{3}Philips Research North America,

^{4}University of Connecticut,

^{5}Nanjing Brain Hospital, P. R. China,

^{6}University of Connecticut

As our population ages, neurological impairments and degeneration of the musculoskeletal system yield gait abnormalities, which can significantly reduce quality of life. Gait rehabilitative therapy has been widely adopted to help patients maximize community participation and living independence. To further improve the precision and efficiency of rehabilitative therapy, more objective methods need to be developed based on sensory data. Read More

We describe a hybrid quantum system composed of a micrometer-size carbon nanotube (CNT) longitudinally coupled to a flux qubit. We demonstrate the usefulness of this device for generating high-fidelity nonclassical states of the CNT via dissipative quantum engineering. Sideband cooling of the CNT to its ground state and generating a squeezed ground state, as a mechanical analogue of the optical squeezed vacuum, are two additional examples of the dissipative quantum engineering studied here. Read More

We present a theoretical study of a four-electron four-quantum-dot system based on molecular orbital methods, which hosts a pair of singlet-triplet spin qubits. We explicitly take into account of the admixture of electron wave functions in all dots, and have found that this mixing of wave functions has consequences on the energy spectrum, exchange interaction and the gate crosstalk of the system. Specifically, we have found that when the two singlet-triplet qubits are close enough, some of the states are no longer dominated by the computational basis states and the exchange interaction can not simply be understood as the energy difference between the singlet and triplet states. Read More

Permutation codes are widely studied objects due to their numerous applications in various areas, such as power line communications, block ciphers, and the rank modulation scheme for flash memories. Several kinds of metrics are considered for permutation codes according to their specific applications. This paper concerns some improvements on the bounds of permutation codes under Hamming metric and Kendall's $\tau$-metric respectively, using mainly a graph coloring approach. Read More

Jet energy loss and single inclusive jet suppression in high-energy heavy-ion collisions are studied within a pQCD parton model that includes both elastic and radiative interactions between jet shower and medium partons as they propagate through the quark-gluon plasma. The collisional energy loss of jets with a given cone-size is found to be relatively small comparing with the radiative energy loss. However the effect of transverse momentum broadening due to elastic scattering is significant in the calculation of radiative energy loss within the higher-twist formalism. Read More

Observations of solar wind turbulence indicate the existence of multi-scale pressure-balanced structures (PBSs) in the solar wind. In this work, we conduct a numerical simulation to investigate multi-scale PBSs and in particular their formation in compressive MHD turbulence. By the use of a higher order Godunov code Athena,a driven compressible turbulence with an imposed uniform guide field is simulated. Read More

Transferring artistic styles onto everyday photographs has become an extremely popular task in both academia and industry. Recently, offline training has replaced on-line iterative optimization, enabling nearly real-time stylization. When those stylization networks are applied directly to high-resolution images, however, the style of localized regions often appears less similar to the desired artistic style. Read More

We derive the pseudoscalar condensate induced by anomaly and vorticity from the Wigner function for massive fermions in homogeneous electromagnetic fields. It has an anomaly term and a force-vorticity coupling term. As a mass effect, the pseudoscalar condensate is linearly proportional to the fermion mass in small mass expansion. Read More

**Authors:**Takahiro Morishita

^{1}, Louis E. Abramson

^{2}, Tommaso Treu

^{3}, Kasper B. Schmidt

^{4}, Benedetta Vulcani

^{5}, Xin Wang

^{6}

**Affiliations:**

^{1}UCLA,

^{2}UCLA,

^{3}UCLA,

^{4}AIP,

^{5}University of Melbourne,

^{6}UCLA

**Category:**Astrophysics of Galaxies

We investigate the intra-cluster light (ICL) in 4 Hubble Frontier Fields
clusters at $0.3

**Authors:**Xin Wang, Tucker A. Jones, Tommaso Treu, Takahiro Morishita, Louis E. Abramson, Gabriel B. Brammer, Kuang-Han Huang, Matthew A. Malkan, Kasper B. Schmidt, Adriano Fontana, Claudio Grillo, Alaina L. Henry, Wouter Karman, Patrick L. Kelly, Charlotte A. Mason, Amata Mercurio, Piero Rosati, Keren Sharon, Michele Trenti, Benedetta Vulcani

**Category:**Astrophysics of Galaxies

(Abridged) We combine deep HST grism spectroscopy with a new Bayesian method
to derive maps of gas-phase metallicity, nebular dust extinction, and
star-formation rate for 10 star-forming galaxies at high redshift
($1.2

We investigate a general framework of multiplicative multitask feature learning which decomposes each task's model parameters into a multiplication of two components. One of the components is used across all tasks and the other component is task-specific. Several previous methods have been proposed as special cases of our framework. Read More

We show a meaningful theory of classical communication over quantum channels when assisted by no-signalling (NS) and PPT-preserving (PPT) codes, for which both the optimal success probability of a given transmission rate and one-shot $\epsilon$-error capacity are formalized as semidefinite programs (SDPs). Based on this, we obtain improved SDP finite blocklength converse bounds for general quantum channels, which also reduce to the converse bound of Polyanskiy, Poor, and Verd\'{u} for classical channels. Furthermore, we derive two SDP strong converse bounds for the classical capacity of a general quantum channel: for any code with a rate exceeding either of the two bounds of the channel, the success probability vanishes exponentially fast as the number of channel uses increases. Read More

Based on API call sequences, semantic-aware and machine learning (ML) based malware classifiers can be built for malware detection or classification. Previous works concentrate on crafting and extracting various features from malware binaries, disassembled binaries or API calls via static or dynamic analysis and resorting to ML to build classifiers. However, they tend to involve too much feature engineering and fail to provide interpretability. Read More

**Authors:**Benedetta Vulcani

^{1}, Tommaso Treu

^{2}, Carlo Nipoti

^{3}, Kasper B. Schmidt

^{4}, Alan Dressler

^{5}, Takahiro Morshita

^{6}, Bianca M. Poggianti

^{7}, Matthew Malkan

^{8}, Austin Hoag

^{9}, Marusa Bradač

^{10}, Louis Abramson

^{11}, Michele Trenti

^{12}, Laura Pentericci

^{13}, Anja von der Linden

^{14}, Glenn Morris

^{15}, Xin Wang

^{16}

**Affiliations:**

^{1}School of Physics, University of Melbourne, VIC 3010, Australia,

^{2}Department of Physics and Astronomy, University of California, Los Angeles, CA, USA 90095-1547,

^{3}Department of Physics and Astronomy, Bologna University, viale Berti-Pichat 6/2, I-40127 Bologna, Italy,

^{4}Leibniz-Institut für Astrophysik Potsdam,

^{5}The Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101, USA,

^{6}Department of Physics and Astronomy, University of California, Los Angeles, CA, USA 90095-1547,

^{7}INAF-Astronomical Observatory of Padova, Italy,

^{8}Department of Physics and Astronomy, University of California, Los Angeles, CA, USA 90095-1547,

^{9}Department of Physics, University of California, Davis, CA, 95616, USA,

^{10}Department of Physics, University of California, Davis, CA, 95616, USA,

^{11}Department of Physics and Astronomy, University of California, Los Angeles, CA, USA 90095-1547,

^{12}School of Physics, University of Melbourne, VIC 3010, Australia,

^{13}INAF - Osservatorio Astronomico di Roma Via Frascati 33 - 00040 Monte Porzio Catone, I,

^{14}Stony Brook University Department of Physics and Astronomy Stony Brook, NY 11794,

^{15}Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305-4085, USA,

^{16}Department of Physics and Astronomy, University of California, Los Angeles, CA, USA 90095-1547

**Category:**Astrophysics of Galaxies

Exploiting the data of the Grism Lens-Amplified Survey from Space (GLASS), we characterize the spatial distribution of star formation in 76 high star forming galaxies in 10 clusters at 0.3< z <0.7. Read More

Recently, an extremely high superconducting temperature (Tc) of ~200 K has been reported in the sulfur hydride system above 100 GPa. This result is supported by theoretical predictions and verified experimentally. The crystal structure of the superconducting phase was also identified experimentally, confirming the theoretically predicted structure as well as a decomposition mechanism from H2S to H3S+S. Read More

Existing approaches to resource allocation for nowadays stochastic networks are challenged to meet fast convergence and tolerable delay requirements. The present paper leverages online learning advances to facilitate stochastic resource allocation tasks. By recognizing the central role of Lagrange multipliers, the underlying constrained optimization problem is formulated as a machine learning task involving both training and operational modes, with the goal of learning the sought multipliers in a fast and efficient manner. Read More

Given a database, the private information retrieval (PIR) protocol allows a user to make queries to several servers and retrieve a certain item of the database via the feedbacks, without revealing the privacy of the specific item to any single server. Classical models of PIR protocols require that each server stores a whole copy of the database. Recently new PIR models are proposed with coding techniques arising from distributed storage system. Read More

OS-level virtualization incurs smaller start-up and run-time overhead than HAL-based virtualization and thus forms an important building block for developing fault-tolerant and intrusion-tolerant applications. A complete implementation of OS-level virtualization on the Windows platform requires virtualization of Windows services, such as system services like the Remote Procedure Call Server Service (RPCSS), because they are essentially extensions of the kernel. As Windows system services work very differently from their counterparts on UNIX-style OS, i. Read More

We propose a method to entangle two distant vibrating microsize mirrors (i.e., mechanical oscillators) in a cavity optomechanical system. Read More

In this paper, we give a new genus-4 topological recursion relation for Gromov-Witten invariants of compact symplectic manifolds via Pixton's relations on the moduli space of curves. As an application, we prove Pixton's relations imply a known topological recursion relation on $\bar{\mathcal{M}}_{g,1}$ for genus $g\leq4$. Read More

Quantum Lov\'asz number, as a natural generalization of the celebrated Lov\'asz number in graph theory, is the best known efficiently computable upper bound of the entanglement-assisted zero-error classical capacity of a quantum channel. However, it remains an intriguing open problem whether this number always coincides with the entanglement-assisted zero-error capacity. Here we show that there is a strict gap between these two quantities for a class of explicitly constructed qutrit-to-qutrit channels. Read More

Heralded near-deterministic multi-qubit controlled phase gates with integrated error detection have recently been proposed by Borregaard {\it et al}. [Phys. Rev. Read More