Xiaohua Liu

Xiaohua Liu
Are you Xiaohua Liu?

Claim your profile, edit publications, add additional information:

Contact Details

Xiaohua Liu

Pubs By Year

Pub Categories

Computer Science - Computation and Language (4)

Publications Authored By Xiaohua Liu

In typical neural machine translation~(NMT), the decoder generates a sentence word by word, packing all linguistic granularities in the same time-scale of RNN. In this paper, we propose a new type of decoder for NMT, which splits the decode state into two parts and updates them in two different time-scales. Specifically, we first predict a chunk time-scale state for phrasal modeling, on top of which multiple word time-scale states are generated. Read More

Although end-to-end Neural Machine Translation (NMT) has achieved remarkable progress in the past two years, it suffers from a major drawback: translations generated by NMT systems often lack of adequacy. It has been widely observed that NMT tends to repeatedly translate some source words while mistakenly ignoring other words. To alleviate this problem, we propose a novel encoder-decoder-reconstructor framework for NMT. Read More

In neural machine translation (NMT), generation of a target word depends on both source and target contexts. We find that source contexts have a direct impact on the adequacy of a translation while target contexts affect the fluency. Intuitively, generation of a content word should rely more on the source context and generation of a functional word should rely more on the target context. Read More

Attention mechanism has enhanced state-of-the-art Neural Machine Translation (NMT) by jointly learning to align and translate. It tends to ignore past alignment information, however, which often leads to over-translation and under-translation. To address this problem, we propose coverage-based NMT in this paper. Read More