# Xiao Zhang - Nanjing University

## Contact Details

NameXiao Zhang |
||

AffiliationNanjing University |
||

CityNanjing Shi |
||

CountryChina |
||

## Pubs By Year |
||

## External Links |
||

## Pub CategoriesPhysics - Materials Science (9) Computer Science - Computer Vision and Pattern Recognition (6) Mathematics - Combinatorics (6) Physics - Mesoscopic Systems and Quantum Hall Effect (6) Statistics - Machine Learning (5) Physics - Strongly Correlated Electrons (5) Physics - Optics (3) Computer Science - Learning (3) General Relativity and Quantum Cosmology (3) Mathematics - Classical Analysis and ODEs (2) Computer Science - Computation and Language (2) High Energy Physics - Phenomenology (2) Physics - Accelerator Physics (2) Computer Science - Sound (1) Nuclear Theory (1) Computer Science - Artificial Intelligence (1) Nonlinear Sciences - Pattern Formation and Solitons (1) Physics - Physics and Society (1) Mathematics - Dynamical Systems (1) Computer Science - Computer Science and Game Theory (1) Mathematics - Optimization and Control (1) Mathematics - Differential Geometry (1) Physics - Other (1) Instrumentation and Methods for Astrophysics (1) Physics - Classical Physics (1) |

## Publications Authored By Xiao Zhang

In this short paper, we show that the peeling property still holds for Bondi-Sachs metrics with nonzero cosmological constant under the new boundary condition with nontrivial B, X, Y obtained in [6]. This should indicate the new boundary condition is natural. Moreover, we construct some nontrivial vacuum Bondi-Sachs metrics without the Bondi news. Read More

We consider the phase retrieval problem of recovering the unknown signal from the magnitude-only measurements, where the measurements can be contaminated by both sparse arbitrary corruption and bounded random noise. We propose a new nonconvex algorithm for robust phase retrieval, namely Robust Wirtinger Flow, to jointly estimate the unknown signal and the sparse corruption. We show that our proposed algorithm is guaranteed to converge linearly to the unknown true signal up to a minimax optimal statistical precision in such a challenging setting. Read More

Laser cooling of relativistic heavy ion beams of Li-like C$^{3+}$ and O$^{4+}$ is being in preparation at the experimental Cooler Storage Ring (CSRe). Recently, a preparatory experiment to test important prerequisites for laser cooling of relativistic $^{12}$C$^{3+}$ ion beams using a pulsed laser system has been performed at the CSRe. Unfortunately, the interaction between the ions and the pulsed laser cannot be detected. Read More

Computation of semantic similarity between concepts is an important foundation for many research works. This paper focuses on IC computing methods and IC measures, which estimate the semantic similarities between concepts by exploiting the topological parameters of the taxonomy. Based on analyzing representative IC computing methods and typical semantic similarity measures, we propose a new hybrid IC computing method. Read More

By considering Higgs modes within the Ginzburg-Landau framework, we study influences of a rotated magnetic field on the color-flavor-locked-type matter of dense QCD. We demonstrate, in a model-independent way, that a diquark condensate may be triggered by the magnetic response of rotated-charged Higgs modes, in addition to the known color-flavor-locked condensate. Moreover, the condensate is applied to explore formations of vortices in the presence of external magnetic fields. Read More

In this paper, we present several upper bounds for the adjacency and signless Laplacian spectral radii of uniform hypergraphs in terms of degree sequences. Read More

We discuss the government's reward and penalty mechanism in the presence of asymmetric information and carbon emission constraint when downstream retailers compete in a reverse supply chain network. Considering five game models which are different in terms of the coordination structure of the reverse supply chain network and power structure of the reward-penalty mechanism: (1) the reverse supply chain network centralized decision-making model; (2) the reverse supply chain network centralized decision-making model with carbon emission constraint; (3) the retailers' competition reverse supply chain network decentralized decision-making model; (4) the retailers' competition reverse supply chain network decentralized decision-making model with carbon emission constraint; (5) the retailers' competition reverse supply chain network decentralized decision-making model with carbon emission constraint and the government's reward-penalty mechanism. Building the participation-incentive contract under each model use the principal-agent theory, and solving the model use the Lagrange multiplier method. Read More

We study the problem of low-rank plus sparse matrix recovery. We propose a generic and efficient nonconvex optimization algorithm based on projected gradient descent and double thresholding operator, with much lower computational complexity. Compared with existing convex-relaxation based methods, the proposed algorithm recovers the low-rank plus sparse matrices for free, without incurring any additional statistical cost. Read More

In magnetic multilayers, spin accumulation manifests itself as an excess of electrons in one spin channel and an equal deficiency in the other under the quasi-neutrality condition. Here, taking a typical ferromagnet/nonmagnet (FM/NM) junction as an example, we model the two spin channels as the two plates of a capacitor. This enables us to introduce the spin-accumulation (SA) capacitance to measure the ability of a material to store spins. Read More

Using a macroscopic approach, we studied theoretically the heat generation in a typical spin valve with nonmagnetic spacer layer of finite thickness. Our analysis shows that the spin-dependent heat generation cannot be interpreted as the Joule heating of the spin-coupled interface resistance except for some special segments. Moreover, the spin-coupled interface resistance can be negative in certain situation, and thus its "Joule heating" should be understood instead as the work done by the extra field in the ferromagnetic layers and at the spin-selective interfaces. Read More

The extra heat generation in spin transport is usually interpreted in terms of the spin relaxation. By reformulating the heat generation rate, we found alternative current-force pairs without cross effects, which enable us to interpret the product of each pair as a distinct mechanism of heat generation. The results show that the spin-dependent part of the heat generation includes two terms. Read More

Hyper-Wiener index was introduced as one of the main generalizations of the well known Wiener index. Through the years properties of the Wiener index have been extensively studied in both Mathematics and Chemistry. The Hyper-Wiener index, although received much attention, is far from being thoroughly examined due to its complex definition. Read More

This paper is devoted to the study of lower and upper bounds for the number of vertices of the polytope of $n\times n\times n$ stochastic tensors (i.e., triply stochastic arrays of dimension $n$). Read More

The Erd\H{o}s-S\'{o}s Conjecture states that every graph with average degree more than $k-2$ contains all trees of order $k$ as subgraphs. In this paper, we consider a variation of the above conjecture: studying the maximum size of an $(n,m)$-bipartite graph which does not contain all $(k,l)$-bipartite trees for given integers $n\ge m$ and $k\ge l$. In particular, we determine that the maximum size of an $(n,m)$-bipartite graph which does not contain all $(n,m)$-bipartite trees as subgraphs (or all $(k,2)$-bipartite trees as subgraphs, respectively). Read More

Near-infrared imaging has been considered as a solution to provide high quality photographs in dim lighting conditions. This imaging system captures two types of multimodal images: one is near-infrared gray image (NGI) and the other is the visible color image (VCI). NGI is noise-free but it is grayscale, whereas the VCI has colors but it contains noise. Read More

Static and dynamic properties of vortices in a two-component Bose-Einstein condensate with Rashba spin-orbit coupling are investigated. The mass current around a vortex core in the plane-wave phase is found to be deformed by the spin-orbit coupling, and this makes the dynamics of the vortex pairs quite different from those in a scalar Bose-Einstein condensate. The velocity of a vortex-antivortex pair is much smaller than that without spin-orbit coupling, and there exist stationary states. Read More

Using a macroscopic approach, we studied theoretically the heat generation due to spin transport in a typical spin valve with nonmagnetic spacer layer of finite thickness. Our analysis shows that the spin-dependent heat generation can also be caused by another mechanism, the spin-conserving scattering in the presence of spin accumulation gradient, in addition to the well-known spin-flip scattering. The two mechanisms have equal contributions in semi-infinite layers, such as the ferromagnetic layers of the spin valve. Read More

Of late, there has been intense interest in the realization of topological phases in very experimentally accessible classical systems like mechanical metamaterials and photonic crystals. Subjecting them to a time-dependent driving protocol further expands the diversity of possible topological behavior. We introduce a very realistic experimental proposal for a mechanical Floquet Chern insulator using a lattice of masses equipped with time-varying electromagnets. Read More

We propose a generic framework based on a new stochastic variance-reduced gradient descent algorithm for accelerating nonconvex low-rank matrix recovery. Starting from an appropriate initial estimator, our proposed algorithm performs projected gradient descent based on a novel semi-stochastic gradient specifically designed for low-rank matrix recovery. Based upon the mild restricted strong convexity and smoothness conditions, we derive a projected notion of the restricted Lipschitz continuous gradient property, and prove that our algorithm enjoys linear convergence rate to the unknown low-rank matrix with an improved computational complexity. Read More

Chirality represents a kind of symmetry breaking characterized by the non-coincidence of an object with its mirror image, and has been attracting intense attention in a broad range of scientific areas. The recent realization of spin-orbit coupling in atomic gases provides a new perspective to study quantum states with chirality. Here we demonstrate that the combined effects of spin-orbit coupling and interatomic soft-core interaction can induce an exotic supersolid phase, in which the chiral symmetry is broken and accompanied by the spontaneous emergence of circulating particle current. Read More

We study the problem of estimating low-rank matrices from linear measurements (a.k.a. Read More

We study both noncentrosymmetric and time-reversal breaking Weyl semimetal systems under a strong magnetic field with the Coulomb interaction. The three-dimensional bulk system is reduced to many mutually interacting quasi-one-dimensional wires. Each strongly correlated wire can be approached within the Tomonaga-Luttinger liquid formalism. Read More

In the recent years, there has been a drive towards the realization of topological phases beyond conventional electronic materials, including phases defined in more than three dimensions. We propose a way to realize 2nd Chern number topological phases with photonic crystals simply made up of defect resonators embedded within a regular lattice of resonators. In particular, through a novel quasiperiodic spatial modulations in the defect radii, a defect lattice possessing topologically nontrivial Chern bands with non-abelian berry curvature living in four-dimensional synthetic space is proposed. Read More

The New Vacuum Solar Telescope (NVST) is a 1-m solar telescope that aims to observe the fine structures in both the photosphere and the chromosphere of the Sun. The observational data acquired simultaneously from one channel for the chromosphere and two channels for the photosphere bring great challenges to the data storage of NVST. The multi-channel instruments of NVST, including scientific cameras and multi-band spectrometers, generate at least 3 terabytes data per day and require high access performance while storing massive short-exposure images. Read More

Monolayer transition metal dichalcogenide (TMDC) crystals, as direct-gap materials with unusually strong light-matter interaction, have attracted much recent attention. In contrast to the initial understanding, the minima of the conduction band are predicted to be spin split. Because of this splitting and the spin-polarized character of the valence bands, the lowest-lying excitonic states in WX2 (X=S, Se) are expected to be spin-forbidden and optically dark. Read More

Convolutional neural networks have achieved great improvement on face recognition in recent years because of its extraordinary ability in learning discriminative features of people with different identities. To train such a well-designed deep network, tremendous amounts of data is indispensable. Long tail distribution specifically refers to the fact that a small number of generic entities appear frequently while other objects far less existing. Read More

Characterizing electromagnetic wave propagation in nonlinear and inhomogeneous media is of great interest from both theoretical and practical perspectives, even though it is extremely complicated. In fact, it is still an unresolved issue to find the exact solutions to the nonlinear waves in the orthogonal curvilinear coordinates. In this paper, we present an analytic method to handle the problem of electromagnetic waves propagation in arbitrarily nonlinear and particularly inhomogeneous media without dispersion. Read More

A deep learning approach has been widely applied in sequence modeling problems. In terms of automatic speech recognition (ASR), its performance has significantly been improved by increasing large speech corpus and deeper neural network. Especially, recurrent neural network and deep convolutional neural network have been applied in ASR successfully. Read More

Creating aesthetically pleasing pieces of art, including music, has been a long-term goal for artificial intelligence research. Despite recent successes of long-short term memory (LSTM) recurrent neural networks (RNNs) in sequential learning, LSTM neural networks have not, by themselves, been able to generate natural-sounding music conforming to music theory. To transcend this inadequacy, we put forward a novel method for music composition that combines the LSTM with Grammars motivated by music theory. Read More

Three-dimensional (3D) metals/semimetals under magnetic field have an instability toward a density wave (DW) ordering which breaks a translational symmetry along the field direction. Effective boson models for the DW phases take forms of XY models with/without Potts terms. Longitudinal conductivity along the field direction is calculated in the DW phases with inclusion of effects of low-energy charge fluctuation (phason) and disorder. Read More

We extend the k-inflation which is a type of kinetically driven inflationary model under the standard inflationary scenario to a possible warm inflationary scenario. The dynamical equations of this warm k-inflation model are obtained. We rewrite the slow-roll parameters which are different from the usual potential driven inflationary models and perform a linear stability analysis to give the proper slow-roll conditions in the warm k-inflation. Read More

In this paper, the theoretical aspects behind longitudinal RF capture are reviewed and the capture process is simulated via a program based on this theory. Four kinds of cases with different initial distribution and capture curve are considered, i.e. Read More

The Tur\'{a}n number of a graph $H$, $ex(n,H)$, is the maximum number of edges in any graph of order $n$ which does not contain $H$ as a subgraph. Lidick\'{y}, Liu and Palmer determined $ex(n, F_m)$ for $n$ sufficiently large and proved that the extremal graph is unique, where $F_m$ is disjoint paths of $P_{k_1}, \ldots, P_{k_m}$ [Lidick\'{y},B., Liu,H. Read More

We study a quasispin-$1/2$ Bose-Einstein condensate with synthetically generated spin-orbit coupling in a toroidal trap, and show that the system has a rich variety of ground and metastable states. As the central hole region increases, i.e. Read More

The anomalous Hall effect is investigated for ferromagnetic Fe3Sn2 single crystal with geometrically frustrated kagome bilayer of Fe. The scaling behavior between anomalous Hall resistivity rho_{xy}^{A} and longitudinal resistivity rho_{xx} is quadratic and further analysis implies that the AHE in Fe3Sn2 single crystal should be dominated by the intrinsic Karplus-Luttinger mechanism rather than extrinsic skew-scattering or side-jump mechanisms. Moreover, there is a sudden jump of anomalous Hall conductivity sigma_{xy}^{A} appearing at about 100 K where the spin-reorientation transition from the c axis to the ab plane is completed. Read More

We propose a unified framework for estimating low-rank matrices through nonconvex optimization based on gradient descent algorithm. Our framework is quite general and can be applied to both noisy and noiseless observations. In the general case with noisy observations, we show that our algorithm is guaranteed to linearly converge to the unknown low-rank matrix up to minimax optimal statistical error, provided an appropriate initial estimator. Read More

The non-relativistic wave function framework is applied to study the production and decay of the exotic hadrons which can be effectively described as bound states of other hadrons. Employing the factorized formulation, we investigate the production of exotic hadrons in the multiproduction processes at high energy hadronic colliders with the help of event generators. This study provides crucial information for the measurements of the relevant exotic hadrons. Read More

KMgBi single crystals are grown by using the Bi flux successfully. KMgBi shows semiconducting behavior with a metal-semiconductor transition at high temperature region and a resistivity plateau at low temperature region, suggesting KMgBi could be a topological insulator with a very small band gap. Moreover, KMgBi exhibits multiband feature with strong temperature dependence of carrier concentrations and mobilities. Read More

Near-infrared gray images captured together with corresponding visible color images have recently proven useful for image restoration and classification. This paper introduces a new coloring method to add colors to near-infrared gray images based on a contrast-preserving mapping model. A naive coloring method directly adds the colors from the visible color image to the near-infrared gray image; however, this method results in an unrealistic image because of the discrepancies in brightness and image structure between the captured near-infrared gray image and the visible color image. Read More

This letter proposes a simple method of transferring rain structures of a given exemplar rain image into a target image. Given the exemplar rain image and its corresponding masked rain image, rain patches including rain structures are extracted randomly, and then residual rain patches are obtained by subtracting those rain patches from their mean patches. Next, residual rain patches are selected randomly, and then added to the given target image along a raster scanning direction. Read More

This paper introduces a new rain removal model based on the shrinkage of the sparse codes for a single image. Recently, dictionary learning and sparse coding have been widely used for image restoration problems. These methods can also be applied to the rain removal by learning two types of rain and non-rain dictionaries and forcing the sparse codes of the rain dictionary to be zero vectors. Read More

Near-infrared imaging can capture haze-free near-infrared gray images and visible color images, according to physical scattering models, e.g., Rayleigh or Mie models. Read More

In this paper, we consider the monotonicity of certain combinations of the
Gaussian hypergeometric functions $F(a-1,b;a+b;1-x^c)$ and
$F(a-1-\delta,b+\delta;a+b;1-x^d)$ on $(0,1)$ for $\delta\in(a-1,0)$, and study
the problem of comparing these two functions, thus get the largest value
$\delta_1=\delta_1(a,c,d)$ such that the inequality
$F(a-1,b;a+b;1-x^c)

The atom-bond connectivity (ABC) index is a degree-based topological index. It was introduced due to its applications in modeling the properties of certain molecular structures and has been since extensively studied. In this note, we examine the influence on the extremal values of the ABC index by various graph parameters. Read More

The latest experimental advances have extended the scenario of coupling mechanical degrees of freedom in chiral magnets (MnSi/MnGe) to the topologically nontrivial skyrmion crystal and even monopole lattices. Equipped with a spin-wave theory highlighting the topological features, we devise an interacting model for acoustic phonons and magnons to explain the experimental findings in a monopole lattice with a topological phase transition, i.e. Read More

We study theoretically the transport properties of a three-dimensional spin texture made from three orthogonal helices, which is essentially a lattice of monopole-antimonopole pairs connected by Skyrmion strings. This spin structure is proposed for MnGe based on the neutron scattering experiment as well as the Lorentz transmission electron microscopy observation. Equipped with a sophisticated spectral analysis method, we adopt finite temperature Green's function technique to calculate the longitudinal dc electric transport in such system. Read More

In non-extreme Kerr-Newman-AdS spacetime, we prove that there is no nontrivial Dirac particle which is $L^p$ for $0

|Q|+q \kappa $, outside and away from the event horizon. By taking $q=\frac{1}{2}$, we show that there is no normalizable massive Dirac particle with mass greater than $|Q|+\frac{\kappa}{2} $ outside and away from the event horizon in non-extreme Kerr-Newman-AdS spacetime, and they must either disappear into the black hole or escape to infinity, and this recovers the same result of Belgiorno and Cacciatori in the case of $Q=0$ obtained by using spectral methods. Furthermore, we prove that any Dirac particle with eigenvalue $|\lambda|<\frac{\kappa}{2} $ must be $L^2$ outside and away from the event horizon. Read More

We show that truncated rotating square waveguide arrays support new types of localized modes that exist even in the linear case, in complete contrast to localized excitations in nonrotating arrays requiring nonlinearity for their existence and forming above the energy flow threshold. These new modes appear either around array center, since rotation leads to the emergence of the effective attractive potential with a minimum at the rotation axis, or in the array corners, in which case localization occurs due to competition between centrifugal force (in terms of quasi-particle analogy) and total internal reflection at the interface of the truncated array. The degree of localization of the central and corner modes mediated by rotation increases with rotation frequency. Read More

We consider a spin-1 Bose-Einstein condensate with Rashba spin-orbit coupling and dipole-dipole interaction confined in a cigar-shaped trap. Due to the combined effects of spin-orbit coupling, dipole-dipole interaction, and trap geometry, the system exhibits a rich variety of ground-state spin structures, including twisted spin vortices. The ground-state phase diagram is determined with respect to the strengths of the spin-orbit coupling and dipole-dipole interaction. Read More

We propose generalizations of a number of standard network models, including the classic random graph, the configuration model, and the stochastic block model, to the case of time-varying networks. We assume that the presence and absence of edges are governed by continuous-time Markov processes with rate parameters that can depend on properties of the nodes. In addition to computing equilibrium properties of these models, we demonstrate their use in data analysis and statistical inference, giving efficient algorithms for fitting them to observed network data. Read More