X. W. Shu - USTC

X. W. Shu
Are you X. W. Shu?

Claim your profile, edit publications, add additional information:

Contact Details

X. W. Shu

Pubs By Year

External Links

Pub Categories

Astrophysics of Galaxies (28)
Cosmology and Nongalactic Astrophysics (18)
High Energy Astrophysical Phenomena (8)
Instrumentation and Methods for Astrophysics (4)
Computer Science - Computer Vision and Pattern Recognition (3)
Physics - Optics (3)
Physics - Fluid Dynamics (1)
Physics - Physics and Society (1)
Computer Science - Digital Libraries (1)
Computer Science - Cryptography and Security (1)

Publications Authored By X. W. Shu

The identification of high-redshift massive galaxies with old stellar populations may pose challenges to some models of galaxy formation. However, to securely classify a galaxy as quiescent, it is necessary to exclude significant ongoing star formation, something that can be challenging to achieve at high redshift. In this letter, we analyse deep ALMA/870um and SCUBA-2/450um imaging of the claimed "post-starburst" galaxy ZF-20115 at z=3. Read More

RXJ 1301.9+2747 is an optically identified very low mass AGN candidate with M_BH~1x10^6M_sun, which shows extremely soft X-ray emission and unusual X-ray variability in the form of short-lived flares. We present an analysis of multiwavelength observations of RXJ 1301. Read More

We present a new technique to obtain multi-wavelength "super-deblended" photometry in highly confused images, that we apply here in the GOODS-North field to Herschel and (sub-)millimeter data sets. The key novelties of the method are two: first, starting from a common large prior database of deep 24 um and VLA 20 cm detections, an active selection of useful fitting priors is performed independently at each frequency band and moving from less to more confused bands. Exploiting knowledge of redshift and all available photometry for each source up to the dataset under exam, we identify hopelessly faint priors that we remove from the fitting pool. Read More

We search for high-redshift dropout galaxies behind the Hubble Frontier Fields (HFF) galaxy cluster MACS J1149.5+2223, a powerful cosmic lens that has revealed a number of unique objects in its field. Using the deep images from the Hubble and Spitzer space telescopes, we find 11 galaxies at z>7 in the MACS J1149. Read More

This paper investigates and examines the events leading up to the second most devastating data breach in history: the attack on the Target Corporation. It includes a thorough step-by-step analysis of this attack and a comprehensive anatomy of the malware named BlackPOS. Also, this paper provides insight into the legal aspect of cybercrimes, along with a prosecution and sentence example of the well-known TJX case. Read More

We explore the dependence of the incidence of moderate-luminosity ($L_{X} = 10^{41.9-43.7}$ erg s$^{-1}$) AGNs and the distribution of their accretion rates on host color at 0. Read More

A novel approach for a delay line interferometer (DLI) based purely on forward Bragg scattering is proposed. We have numerically and experimentally demonstrated that a Bragg grating can deliver the functionality of a DLI in its transmission mode along a single common interfering optical path, instead of the conventional DLI implementation with two interfering optical paths. As a proof of concept, a fiber Bragg grating has been designed and fabricated, showing the desired functionality in the transmission mode of the Bragg grating. Read More

Authors: S. N. Zhang, M. Feroci, A. Santangelo, Y. W. Dong, H. Feng, F. J. Lu, K. Nandra, Z. S. Wang, S. Zhang, E. Bozzo, S. Brandt, A. De Rosa, L. J. Gou, M. Hernanz, M. van der Klis, X. D. Li, Y. Liu, P. Orleanski, G. Pareschi, M. Pohl, J. Poutanen, J. L. Qu, S. Schanne, L. Stella, P. Uttley, A. Watts, R. X. Xu, W. F. Yu, J. J. M. in 't Zand, S. Zane, L. Alvarez, L. Amati, L. Baldini, C. Bambi, S. Basso, S. Bhattacharyya, R. Bellazzini, T. Belloni, P. Bellutti, S. Bianchi, A. Brez, M. Bursa, V. Burwitz, C. Budtz-Jorgensen, I. Caiazzo, R. Campana, X. L. Cao, P. Casella, C. Y. Chen, L. Chen, T. X. Chen, Y. Chen, Y. Chen, Y. P. Chen, M. Civitani, F. Coti Zelati, W. Cui, W. W. Cui, Z. G. Dai, E. Del Monte, D. De Martino, S. Di Cosimo, S. Diebold, M. Dovciak, I. Donnarumma, V. Doroshenko, P. Esposito, Y. Evangelista, Y. Favre, P. Friedrich, F. Fuschino, J. L. Galvez, Z. L. Gao, M. Y. Ge, O. Gevin, D. Goetz, D. W. Han, J. Heyl, J. Horak, W. Hu, F. Huang, Q. S. Huang, R. Hudec, D. Huppenkothen, G. L. Israel, A. Ingram, V. Karas, D. Karelin, P. A. Jenke, L. Ji, T. Kennedy, S. Korpela, D. Kunneriath, C. Labanti, G. Li, X. Li, Z. S. Li, E. W. Liang, O. Limousin, L. Lin, Z. X. Ling, H. B. Liu, H. W. Liu, Z. Liu, B. Lu, N. Lund, D. Lai, B. Luo, T. Luo, B. Ma, S. Mahmoodifar, M. Marisaldi, A. Martindale, N. Meidinger, Y. P. Men, M. Michalska, R. Mignani, M. Minuti, S. Motta, F. Muleri, J. Neilsen, M. Orlandini, A T. Pan, A. Patruno, E. Perinati, A. Picciotto, C. Piemonte, M. Pinchera, A. Rachevski, M. Rapisarda, N. Rea, E. M. R. Rossi, A. Rubini, G. Sala, X. W. Shu, C. Sgro, Z. X. Shen, P. Soffitta, L. M. Song, G. Spandre, G. Stratta, T. E. Strohmayer, L. Sun, J. Svoboda, G. Tagliaferri, C. Tenzer, H. Tong, R. Taverna, G. Torok, R. Turolla, A. Vacchi, J. Wang, J. X. Wang, D. Walton, K. Wang, J. F. Wang, R. J. Wang, Y. F. Wang, S. S. Weng, J. Wilms, B. Winter, X. Wu, X. F. Wu, S. L. Xiong, Y. P. Xu, Y. Q. Xue, Z. Yan, S. Yang, X. Yang, Y. J. Yang, F. Yuan, W. M. Yuan, Y. F. Yuan, G. Zampa, N. Zampa, A. Zdziarski, C. Zhang, C. L. Zhang, L. Zhang, X. Zhang, Z. Zhang, W. D. Zhang, S. J. Zheng, P. Zhou, X. L. Zhou

eXTP is a science mission designed to study the state of matter under extreme conditions of density, gravity and magnetism. Primary targets include isolated and binary neutron stars, strong magnetic field systems like magnetars, and stellar-mass and supermassive black holes. The mission carries a unique and unprecedented suite of state-of-the-art scientific instruments enabling for the first time ever the simultaneous spectral-timing-polarimetry studies of cosmic sources in the energy range from 0. Read More

We present a new exploration of the cosmic star-formation history and dust obscuration in massive galaxies at redshifts $0.5< z<6$. We utilize the deepest 450 and 850$\mu$m imaging from SCUBA-2 CLS, covering 230arcmin$^2$ in the AEGIS, COSMOS and UDS fields, together with 100-250$\mu$m imaging from Herschel. Read More

This paper introduces EGG, the Empirical Galaxy Generator, a tool designed within the ASTRODEEP collaboration to generate mock galaxy catalogs for deep fields with realistic fluxes and simple morphologies. The simulation procedure is based exclusively on empirical prescriptions -- rather than first principles -- to provide the most accurate match with observations at 0Read More

We report the discovery of a remarkable concentration of massive galaxies with extended X-ray emission at $z_{spec} = 2.506$, which contains 11 massive ($M_{*} \gtrsim 10^{11} M_{\odot}$) galaxies in the central 80kpc region (11.6$\sigma$ overdensity). Read More

Surface nanoscale axial photonics (SNAP) structures are fabricated with a femtosecond laser for the first time. The inscriptions introduced by the laser pressurize the fiber and cause its nanoscale effective radius variation. We demonstrate the subangstrom precise fabrication of individual and coupled SNAP microresonators having the effective radius variation of several nanometers. Read More

Similarity-preserving hashing is a commonly used method for nearest neighbour search in large-scale image retrieval. For image retrieval, deep-networks-based hashing methods are appealing since they can simultaneously learn effective image representations and compact hash codes. This paper focuses on deep-networks-based hashing for multi-label images, each of which may contain objects of multiple categories. Read More

We present multiwavelength photometric catalogues (HST, Spitzer and Hawk-I K band) for the first two of the Frontier Fields, Abell2744 and MACSJ0416 (plus their parallel fields). To detect faint sources even in the central regions of the clusters, we develop a robust and repeatable procedure that uses the public codes Galapagos and Galfit to model and remove most of the light contribution from both the brightest cluster members as well as the ICL. We perform the detection on the HST H160 processed image to obtain a pure H-selected sample. Read More

We present the first public release of photometric redshifts, galaxy rest-frame properties and associated magnification values in the cluster and parallel pointings of the first two Frontier Fields, Abell-2744 and MACS-J0416. We exploit a multi-wavelength catalogue ranging from HST to ground-based K and Spitzer IRAC which is specifically designed to enable detection and measurement of accurate fluxes in crowded cluster regions. The multi-band information is used to derive photometric redshifts and physical properties of sources detected either in the H-band image alone or from a stack of four WFC3 bands. Read More

We report on the discovery of broad Balmer absorption lines variability in the QSO SDSS J125942.80+121312.6, based on the optical and near-infrared spectra taken from the SDSS-I, SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), and TripleSpec observations over a timescale of 5. Read More

In this paper we present the results of our search for and study of $z \gtrsim 6$ galaxy candidates behind the third Frontier Fields (FF) cluster, MACSJ0717.5+3745, and its parallel field, combining data from Hubble and Spitzer. We select 39 candidates using the Lyman Break technique, for which the clear non-detection in optical make the extreme mid-$z$ interlopers hypothesis unlikely. Read More

Small compression noises, despite being transparent to human eyes, can adversely affect the results of many image restoration processes, if left unaccounted for. Especially, compression noises are highly detrimental to inverse operators of high-boosting (sharpening) nature, such as deblurring and superresolution against a convolution kernel. By incorporating the non-linear DCT quantization mechanism into the formulation for image restoration, we propose a new sparsity-based convex programming approach for joint compression noise removal and image restoration. Read More

We present Keck/ESI long-slit spectroscopy of SBS 1421+511, a system consisting of a quasar at z = 0.276 and an extended source 3" northern to the quasar. The quasar shows a blue-skewed profile of Balmer broad emission lines, which can be well modeled as emissions from a circular disk with a blueshift velocity of ~1400 km/s. Read More

We introduce a new color-selection technique to identify high-redshift, massive galaxies that are systematically missed by Lyman-break selection. The new selection is based on the H_{160} and IRAC 4.5um bands, specifically H - [4. Read More

We present a new method to search for candidate z~>2 Herschel 500{\mu}m sources in the GOODS-North field, using a S500{\mu}m/S24{\mu}m "color deconfusion" technique. Potential high-z sources are selected against low-redshift ones from their large 500{\mu}m to 24{\mu}m flux density ratios. By effectively reducing the contribution from low-redshift populations to the observed 500{\mu}m emission, we are able to identify counterparts to high-z 500{\mu}m sources whose 24{\mu}m fluxes are relatively faint. Read More

Improving the capabilities of detecting faint X-ray sources is fundamental to increase the statistics on faint high-z AGN and star-forming galaxies. We performed a simultaneous Maximum Likelihood PSF fit in the [0.5-2] keV and [2-7] keV energy bands of the 4 Ms{\em Chandra} Deep Field South (CDFS) data at the position of the 34930 CANDELS H-band selected galaxies. Read More


We present the discovery of Balmer line absorption from H$\alpha$ to H$\gamma$ in an iron low-ionization broad absorption line (FeLoBAL) quasar SDSS J152350.42+391405.2 (hereafter J1523), by the quasi-simultaneous optical and near-infrared spectroscopy. Read More

We searched for z > 7 Lyman-break galaxies (LBGs) in the optical-to-mid-infrared Hubble Frontier Field and associated parallel field observations of the strong-lensing cluster MACS J0416-2403. We discovered 22 candidates, of which six lie at z > 9 and one lies at z > 10. Based on the Hubble and Spitzer photometry, all have secure photometric redshifts and a negligible probability of being at lower redshifts, according to their peak probability ratios, R. Read More

In this paper, we aim to automatically render aging faces in a personalized way. Basically, a set of age-group specific dictionaries are learned, where the dictionary bases corresponding to the same index yet from different dictionaries form a particular aging process pattern cross different age groups, and a linear combination of these patterns expresses a particular personalized aging process. Moreover, two factors are taken into consideration in the dictionary learning process. Read More

We present T-PHOT, a publicly available software aimed at extracting accurate photometry from low-resolution images of deep extragalactic fields, where the blending of sources can be a serious problem for the accurate and unbiased measurement of fluxes and colours. T-PHOT has been developed within the ASTRODEEP project and it can be considered as the next generation to TFIT, providing significant improvements above it and other similar codes. T-PHOT gathers data from a high-resolution image of a region of the sky, and uses it to obtain priors for the photometric analysis of a lower resolution image of the same field. Read More

Neutral Helium multiplets, HeI*3189,3889,10830 are very useful diagnostics to the geometry and physical conditions of the absorbing gas in quasars. So far only a handful of HeI* detections have been reported. Using a newly developed method, we detected HeI*3889 absorption line in 101 sources of a well-defined sample of 285 MgII BAL quasars selected from the SDSS DR5. Read More

We utilize the CLASH (Cluster Lensing And Supernova survey with Hubble) observations of 25 clusters to search for extreme emission-line galaxies (EELGs). The selections are carried out in two central bands: F105W (Y105) and F125W (J125), as the flux of the central bands could be enhanced by the presence of [O III] 4959, 5007 at redshift of about 0.93-1. Read More

We present an analysis of the deepest Herschel images in four major extragalactic fields GOODS-North, GOODS-South, UDS and COSMOS obtained within the GOODS-Herschel and CANDELS-Herschel key programs. The picture provided by 10497 individual far-infrared detections is supplemented by the stacking analysis of a mass-complete sample of 62361 star-forming galaxies from the CANDELS-HST H band-selected catalogs and from two deep ground-based Ks band-selected catalogs in the GOODS-North and the COSMOS-wide fields, in order to obtain one of the most accurate and unbiased understanding to date of the stellar mass growth over the cosmic history. We show, for the first time, that stacking also provides a powerful tool to determine the dispersion of a physical correlation and describe our method called "scatter stacking" that may be easily generalized to other experiments. Read More

We use deep panchromatic datasets in the GOODS-N field, from GALEX to the deepest Herschel far-infrared and VLA radio continuum imaging, to explore, using mass-complete samples, the evolution of the star formation activity and dust attenuation of star-forming galaxies to z~4. Our main results can be summarized as follows: i) the slope of the SFR-M correlation is consistent with being constant, and equal to ~0.8 at least up to z~1. Read More

The deflection angles of lensed sources increase with their distance behind a given lens. We utilize this geometric effect to corroborate the $z_{phot}\simeq9.8$ photometric redshift estimate of a faint near-IR dropout, triply-imaged by the massive galaxy cluster Abell 2744 in deep Hubble Frontier Fields images. Read More

Researchers or students entering a emerging research area are particularly interested in what newly published papers will be most cited and which young researchers will become influential in the future, so that they can catch the most recent advances and find valuable research directions. However, predicting the future importance of scientific articles and authors is challenging due to the dynamic nature of literature networks and evolving research topics. Different from most previous studies aiming to rank the current importance of literatures and authors, we focus on \emph{ranking the future popularity of new publications and young researchers} by proposing a unified ranking model to combine various available information. Read More

Studying transition to a highly disordered state of turbulence from a linearly stable coherent laminar state is conceptually and technically challenging and immensely important, e.g. all pipe and channel flows are of that type. Read More

We utilize 16 band Hubble Space Telescope (HST) observations of 18 lensing clusters obtained as part of the Cluster Lensing And Supernova survey with Hubble (CLASH) Multi-Cycle Treasury program to search for $z\sim6-8$ galaxies. We report the discovery of 204, 45, and 13 Lyman-break galaxy candidates at $z\sim6$, $z\sim7$, and $z\sim8$, respectively, identified from purely photometric redshift selections. This large sample, representing nearly an order of magnitude increase in the number of magnified star-forming galaxies at $z\sim 6-8$ presented to date, is unique in that we have observations in four WFC3/UVIS UV, seven ACS/WFC optical, and all five WFC3/IR broadband filters, which enable very accurate photometric redshift selections. Read More

A fraction of the heavily reddened quasars require a reddening curve which is even steeper than that of the Small Magellanic Cloud. In this paper, we thoroughly characterize the anomalously steep reddening law in quasars, via an exceptional example observed in IRAS 14026+4341. By comparing the observed spectrum to the quasar composite spectrum, we derive a reddening curve in the rest-frame wavelength range of 1200 {\AA}--10000 {\AA}. Read More

In this paper we present a temporal and spectral analysis of X-ray data from the XMM and Chandra observations of the ultrasoft and variable Seyfert galaxy RX J1301.9+2747. In both observations the source clearly displays two distinct states in the X-ray band, a long quiescent state and a short flare (or eruptive) state which differs in count rates by a factor of 5--7. Read More

Quasars with redshifts greater than 4 are rare, and can be used to probe the structure and evolution of the early universe. Here we report the discovery of six new quasars with $i$-band magnitudes brighter than 19.5 and redshifts between 2. Read More

The early Universe at redshift z\sim6-11 marks the reionization of the intergalactic medium, following the formation of the first generation of stars. However, those young galaxies at a cosmic age of \lesssim 500 million years (Myr, at z \gtrsim 10) remain largely unexplored as they are at or beyond the sensitivity limits of current large telescopes. Gravitational lensing by galaxy clusters enables the detection of high-redshift galaxies that are fainter than what otherwise could be found in the deepest images of the sky. Read More

We present the result of the Chandra high-resolution observation of the Seyfert~2 galaxy NGC 7590. This object was reported to show no X-ray absorption in the low-spatial resolution ASCA data. The XMM observations show that the X-ray emission of NGC 7590 is dominated by an off-nuclear ultra-luminous X-ray source (ULX) and an extended emission from the host galaxy, and the nucleus is rather weak, likely hosting a Compton-thick AGN. Read More

We present XMM-Newton spectra of the Seyfert 2 Galaxy IRAS 00521-7054. A strong feature at ~6 keV (observer's frame) can be formally fitted with a strong (EW=1.3+-0. Read More

Using Chandra High Energy Grating (HEG) observations of 32 AGNs, we present a systematic study of the X-ray Baldwin effect (XBE, i.e. the anti-correlation between narrow Fe K{\alpha} line EW and X-ray continuum luminosity for AGN samples) with the highest spectral resolution currently available. Read More

We present a study of the core of the Fe Ka emission line at ~6.4 keV in a sample of type II Seyfert galaxies observed by the Chandra High Energy Grating (HEG). The sample consists of 29 observations of 10 unique sources. Read More

It has been suggested that the narrow cores of the Fe K$\alpha$ emission lines in Active Galactic Nuclei (AGNs) are likely produced in the torus, the inner radius of which can be measured by observing the lag time between the $V$ and $K$ band flux variations. In this paper we compare the virial products of the infrared time lags and the narrow Fe K$\alpha$ widths for 10 type 1 AGNs with the black hole masses from other techniques. We find the narrow Fe K$\alpha$ line width is in average 2. Read More

From the literature, we construct from literature a sample of 25 Seyfert 2 galaxies (S2s) with a broad line region detected in near infrared spectroscopy and 29 with NIR BLR which was detected. We find no significant difference between the nuclei luminosity (extinction-corrected [OIII]~5007) and infrared color $\rm{f_{60}/f_{25}}$ between the two populations, suggesting that the non-detections of NIR BLR could not be due to low AGN luminosity or contamination from the host galaxy. As expected, we find significantly lower X-ray obscurations in Seyfert 2s with NIR BLR detection, supporting the unification scheme. Read More