X. Qiu - HKS - JLab E05-115 and E01-001 - Collaborations

X. Qiu
Are you X. Qiu?

Claim your profile, edit publications, add additional information:

Contact Details

Name
X. Qiu
Affiliation
HKS - JLab E05-115 and E01-001 - Collaborations
Location

Pubs By Year

Pub Categories

 
Computer Science - Computation and Language (16)
 
Physics - Materials Science (11)
 
High Energy Physics - Experiment (10)
 
Physics - Superconductivity (4)
 
Physics - Strongly Correlated Electrons (4)
 
Physics - Instrumentation and Detectors (3)
 
High Energy Physics - Phenomenology (3)
 
Physics - Mesoscopic Systems and Quantum Hall Effect (2)
 
Nuclear Experiment (2)
 
Computer Science - Neural and Evolutionary Computing (2)
 
Computer Science - Artificial Intelligence (2)
 
Computer Science - Data Structures and Algorithms (1)
 
Physics - Accelerator Physics (1)
 
Computer Science - Learning (1)
 
Physics - Other (1)
 
Physics - Fluid Dynamics (1)
 
Physics - Physics and Society (1)
 
Physics - Biological Physics (1)
 
Nuclear Theory (1)
 
Computer Science - Networking and Internet Architecture (1)
 
Physics - Optics (1)

Publications Authored By X. Qiu

Tree-structured neural networks have proven to be effective in learning semantic representations by exploiting syntactic information. In spite of their success, most existing models suffer from the underfitting problem: they recursively use the same shared compositional function throughout the whole compositional process and lack expressive power due to inability to capture the richness of compositionality. In this paper, we address this issue by introducing the dynamic compositional neural networks over tree structure (DC-TreeNN), in which the compositional function is dynamically generated by a meta network. Read More

Recently, several end-to-end neural models have been proposed for machine comprehension tasks. Typically, these models use attention mechanisms to capture the complicated interaction between the context and the query and then point the boundary of answer. To better point the correct answer, we introduce the Mnemonic Reader for machine comprehension tasks, which enhance the attention reader in two aspects. Read More

Different linguistic perspectives causes many diverse segmentation criteria for Chinese word segmentation (CWS). Most existing methods focus on improve the performance for each single criterion. However, it is interesting to exploit these different criteria and mining their common underlying knowledge. Read More

Neural network models have shown their promising opportunities for multi-task learning, which focus on learning the shared layers to extract the common and task-invariant features. However, in most existing approaches, the extracted shared features are prone to be contaminated by task-specific features or the noise brought by other tasks. In this paper, we propose an adversarial multi-task learning framework, alleviating the shared and private latent feature spaces from interfering with each other. Read More

While current-induced spin-orbit torques (SOTs) have been extensively studied in ferromagnets and antiferromagnets, ferrimagnets have been less studied. Here we report the presence of enhanced spin-orbit torques resulting from negative exchange interaction in ferrimagnets. The effective field and switching efficiency increase substantially as CoGd approaches its compensation point, giving rise to 9 times larger spin-orbit torques compared to that of non-compensated one. Read More

Spin-orbit torques (SOTs) have opened a new path to switch the magnetization in perpendicularly magnetized films and are of great interest due to their potential applications in novel data storage technology, such as the magnetic random access memory (MRAM). The effective manipulation of SOT has thus become an important step towards these applications. Here, current induced spin-orbit effective fields and magnetization switching are investigated in Pt/Ta/CoFeB/MgO structures with bilayer heavy metals. Read More

We report a highly efficient tunable THz reflector in graphene. By applying a small gate voltage (up to 3 V), the reflectance of graphene is modulated from a minimum of 0.79% to a maximum of 33. Read More

Social media are massive marketplaces in which memes compete for our attention. We investigate the conditions in which the best ideas prevail in a stylized model of online social network, where agents have behavioral limitations in managing a heavy flow of information. We measure the relationship between the quality of an idea and its likelihood to become prevalent at the system level. Read More

This paper investigates analytic properties of American option prices under the finite moment log-stable (FMLS) model. Under this model the price of American options is characterised by the free boundary problem of a fractional partial differential equation (FPDE) system. Using the technique of approximation we prove that the American put price under the FMLS model is convex with respect the underlying price, and specify the impact of the tail index on option prices. Read More

The objective of knowledge graph embedding is to encode both entities and relations of knowledge graphs into continuous low-dimensional vector spaces. Previously, most works focused on symbolic representation of knowledge graph with structure information, which can not handle new entities or entities with few facts well. In this paper, we propose a novel deep architecture to utilize both structural and textual information of entities. Read More

Long-term context is crucial to joint Chinese word segmentation and POS tagging (S&T) task. However, most of machine learning based methods extract features from a window of characters. Due to the limitation of window size, these methods can not exploit the long distance information. Read More

Sentence ordering is one of important tasks in NLP. Previous works mainly focused on improving its performance by using pair-wise strategy. However, it is nontrivial for pair-wise models to incorporate the contextual sentence information. Read More

We report a THz emitter with excellent performances based on nonmagnetic (NM) and ferromagnetic (FM) heterostructures. The spin currents are first excited by the femtosecond laser beam in the NM/FM bilayer, and then transient charge currents are generated by inverse spin Hall effect, leading to THz emission out of the structure. The broadband THz waves emitted from our film stacks have a peak intensity exceeding 500 um thick ZnTe crystals (standard THz emitters). Read More

We study the spin orbit torque (SOT) and Dzyaloshinskii-Moriya interaction (DMI) in the dual-interfaced Co-Ni perpendicular multilayers. Through the combination of top and bottom layer materials (Pt, Ta, MgO and Cu), SOT and DMI are efficiently manipulated due to an enhancement or cancellation of the top and bottom contributions. However, SOT is found to originate mostly from the bulk of a heavy metal (HM), while DMI is more of interfacial origin. Read More

The magnitude of spin-orbit torque (SOT), exerted to a ferromagnet (FM) from an adjacent heavy metal (HM), strongly depends on the amount of spin currents absorbed in the FM. We exploit the large spin absorption at the Ru interface to manipulate the SOTs in HM/FM/Ru multilayers. While the FM thickness is smaller than its spin dephasing length of 1. Read More

Recently, neural networks have achieved great success on sentiment classification due to their ability to alleviate feature engineering. However, one of the remaining challenges is to model long texts in document-level sentiment classification under a recurrent architecture because of the deficiency of the memory unit. To address this problem, we present a Cached Long Short-Term Memory neural networks (CLSTM) to capture the overall semantic information in long texts. Read More

Neural network based models have achieved impressive results on various specific tasks. However, in previous works, most models are learned separately based on single-task supervised objectives, which often suffer from insufficient training data. In this paper, we propose two deep architectures which can be trained jointly on multiple related tasks. Read More

Strong coupling between discrete phonon and continuous electron-hole pair excitations can give rise to a pronounced asymmetry in the phonon line shape, known as the Fano resonance. This effect has been observed in a variety of systems, such as stripe-phase nickelates, graphene and high-$T_{c}$ superconductors. Here, we reveal explicit evidence for strong coupling between an infrared-active $A_1$ phonon and electronic transitions near the Weyl points (Weyl fermions) through the observation of a Fano resonance in the recently discovered Weyl semimetal TaAs. Read More

2016Aug
Authors: P. Adamson, I. Anghel, A. Aurisano, G. Barr, M. Bishai, A. Blake, G. J. Bock, D. Bogert, S. V. Cao, T. J. Carroll, C. M. Castromonte, R. Chen, S. Childress, J. A. B. Coelho, L. Corwin, D. Cronin-Hennessy, J. K. de Jong, S. De Rijck, A. V. Devan, N. E. Devenish, M. V. Diwan, C. O. Escobar, J. J. Evans, E. Falk, G. J. Feldman, W. Flanagan, M. V. Frohne, M. Gabrielyan, H. R. Gallagher, S. Germani, R. A. Gomes, M. C. Goodman, P. Gouffon, N. Graf, R. Gran, K. Grzelak, A. Habig, S. R. Hahn, J. Hartnell, R. Hatcher, A. Holin, J. Huang, J. Hylen, G. M. Irwin, Z. Isvan, C. James, D. Jensen, T. Kafka, S. M. S. Kasahara, G. Koizumi, M. Kordosky, A. Kreymer, K. Lang, J. Ling, P. J. Litchfield, P. Lucas, W. A. Mann, M. L. Marshak, N. Mayer, C. McGivern, M. M. Medeiros, R. Mehdiyev, J. R. Meier, M. D. Messier, W. H. Miller, S. R. Mishra, S. Moed Sher, C. D. Moore, L. Mualem, J. Musser, D. Naples, J. K. Nelson, H. B. Newman, R. J. Nichol, J. A. Nowak, J. O'Connor, M. Orchanian, R. B. Pahlka, J. Paley, R. B. Patterson, G. Pawloski, A. Perch, M. M. Pfützner, D. D. Phan, S. Phan-Budd, R. K. Plunkett, N. Poonthottathil, X. Qiu, A. Radovic, B. Rebel, C. Rosenfeld, H. A. Rubin, P. Sail, M. C. Sanchez, J. Schneps, A. Schreckenberger, P. Schreiner, R. Sharma, A. Sousa, N. Tagg, R. L. Talaga, J. Thomas, M. A. Thomson, X. Tian, A. Timmons, J. Todd, S. C. Tognini, R. Toner, D. Torretta, G. Tzanakos, J. Urheim, P. Vahle, B. Viren, A. Weber, R. C. Webb, C. White, L. Whitehead, L. H. Whitehead, S. G. Wojcicki, R. Zwaska

We report new constraints on the size of large extra dimensions from data collected by the MINOS experiment between 2005 and 2012. Our analysis employs a model in which sterile neutrinos arise as Kaluza-Klein states in large extra dimensions and thus modify the neutrino oscillation probabilities due to mixing between active and sterile neutrino states. Using Fermilab's NuMI beam exposure of $10. Read More

While word embeddings are currently predominant for natural language processing, most of existing models learn them solely from their contexts. However, these context-based word embeddings are limited since not all words' meaning can be learned based on only context. Moreover, it is also difficult to learn the representation of the rare words due to data sparsity problem. Read More

2016Aug
Authors: P. Adamson, I. Anghel, A. Aurisano, G. Barr, M. Bishai, A. Blake, G. J. Bock, D. Bogert, S. V. Cao, T. J. Carroll, C. M. Castromonte, R. Chen, D. Cherdack, S. Childress, J. A. B. Coelho, L. Corwin, D. Cronin-Hennessy, J. K. de Jong, S. De Rijck, A. V. Devan, N. E. Devenish, M. V. Diwan, C. O. Escobar, J. J. Evans, E. Falk, G. J. Feldman, W. Flanagan, M. V. Frohne, M. Gabrielyan, H. R. Gallagher, S. Germani, R. A. Gomes, M. C. Goodman, P. Gouffon, N. Graf, R. Gran, K. Grzelak, A. Habig, S. R. Hahn, J. Hartnell, R. Hatcher, A. Holin, J. Huang, J. Hylen, G. M. Irwin, Z. Isvan, C. James, D. Jensen, T. Kafka, S. M. S. Kasahara, G. Koizumi, M. Kordosky, A. Kreymer, K. Lang, J. Ling, P. J. Litchfield, P. Lucas, W. A. Mann, M. L. Marshak, N. Mayer, C. McGivern, M. M. Medeiros, R. Mehdiyev, J. R. Meier, M. D. Messier, W. H. Miller, S. R. Mishra, S. Moed Sher, C. D. Moore, L. Mualem, J. Musser, D. Naples, J. K. Nelson, H. B. Newman, R. J. Nichol, J. A. Nowak, J. O'Connor, W. P. Oliver, M. Orchanian, R. B. Pahlka, J. Paley, R. B. Patterson, G. Pawloski, A. Perch, M. M. Pfutzner, D. D. Phan, S. Phan-Budd, R. K. Plunkett, N. Poonthottathil, X. Qiu, A. Radovic, B. Rebel, C. Rosenfeld, H. A. Rubin, P. Sail, M. C. Sanchez, J. Schneps, A. Schreckenberger, P. Schreiner, R. Sharma, A. Sousa, N. Tagg, R. L. Talaga, J. Thomas, M. A. Thomson, X. Tian, A. Timmons, J. Todd, S. C. Tognini, R. Toner, D. Torretta, G. Tzanakos, J. Urheim, P. Vahle, B. Viren, A. Weber, R. C. Webb, C. White, L. Whitehead, L. H. Whitehead, S. G. Wojcicki, R. Zwaska

Forward single $\pi^0$ production by coherent neutral-current interactions, $\nu \mathcal{A} \to \nu \mathcal{A} \pi^0$, is investigated using a 2.8$\times 10^{20}$ protons-on-target exposure of the MINOS Near Detector. For single-shower topologies, the event distribution in production angle exhibits a clear excess above the estimated background at very forward angles for visible energy in the range~1-8 GeV. Read More

In iron-based superconductors, a spin-density-wave (SDW) magnetic order is suppressed with doping and unconventional superconductivity appears in close proximity to the SDW instability. The optical response of the SDW order shows clear gap features: substantial suppression in the low-frequency optical conductivity, alongside a spectral weight transfer from low to high frequencies. Here, we study the detailed temperature dependence of the optical response in three different series of the Ba122 system [Ba$_{1-x}$K$_{x}$Fe$_{2}$As$_{2}$, Ba(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ and BaFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$]. Read More

Sentence ordering is a general and critical task for natural language generation applications. Previous works have focused on improving its performance in an external, downstream task, such as multi-document summarization. Given its importance, we propose to study it as an isolated task. Read More

Introducing attentional mechanism in neural network is a powerful concept, and has achieved impressive results in many natural language processing tasks. However, most of the existing models impose attentional distribution on a flat topology, namely the entire input representation sequence. Clearly, any well-formed sentence has its accompanying syntactic tree structure, which is a much rich topology. Read More

We report the existence of a universal trimer state induced by an impurity interacting with a two-component spin-orbit coupled Fermi gas in two dimensions. In the zero-density limit with a vanishing Fermi sea, the trimer is stabilized by the symmetry of the single-particle spectrum under spin-orbit coupling, and is therefore {\it universal} against the short-range details of the interaction potential. When the Fermi energy increases, we show that the trimer is further stabilized by particle-hole fluctuations over a considerable parameter region. Read More

2016Jul
Authors: P. Adamson, I. Anghel, A. Aurisano, G. Barr, M. Bishai, A. Blake, G. J. Bock, D. Bogert, S. V. Cao, T. J. Carroll, C. M. Castromonte, R. Chen, S. Childress, J. A. B. Coelho, L. Corwin, D. Cronin-Hennessy, J. K. de Jong, S. De Rijck, A. V. Devan, N. E. Devenish, M. V. Diwan, C. O. Escobar, J. J. Evans, E. Falk, G. J. Feldman, W. Flanagan, M. V. Frohne, M. Gabrielyan, H. R. Gallagher, S. Germani, R. A. Gomes, M. C. Goodman, P. Gouffon, N. Graf, R. Gran, K. Grzelak, A. Habig, S. R. Hahn, J. Hartnell, R. Hatcher, A. Holin, J. Huang, J. Hylen, G. M. Irwin, Z. Isvan, C. James, D. Jensen, T. Kafka, S. M. S. Kasahara, G. Koizumi, M. Kordosky, A. Kreymer, K. Lang, J. Ling, P. J. Litchfield, P. Lucas, W. A. Mann, M. L. Marshak, N. Mayer, C. McGivern, M. M. Medeiros, R. Mehdiyev, J. R. Meier, M. D. Messier, W. H. Miller, S. R. Mishra, S. Moed Sher, C. D. Moore, L. Mualem, J. Musser, D. Naples, J. K. Nelson, H. B. Newman, R. J. Nichol, J. A. Nowak, J. O'Connor, M. Orchanian, R. B. Pahlka, J. Paley, R. B. Patterson, G. Pawloski, A. Perch, M. M. Pfutzner, D. D. Phan, S. Phan-Budd, R. K. Plunkett, N. Poonthottathil, X. Qiu, A. Radovic, B. Rebel, C. Rosenfeld, H. A. Rubin, P. Sail, M. C. Sanchez, J. Schneps, A. Schreckenberger, P. Schreiner, R. Sharma, A. Sousa, N. Tagg, R. L. Talaga, J. Thomas, M. A. Thomson, X. Tian, A. Timmons, J. Todd, S. C. Tognini, R. Toner, D. Torretta, G. Tzanakos, J. Urheim, P. Vahle, B. Viren, A. Weber, R. C. Webb, C. White, L. Whitehead, L. H. Whitehead, S. G. Wojcicki, R. Zwaska

We report results of a search for oscillations involving a light sterile neutrino over distances of 1.04 and $735\,\mathrm{km}$ in a $\nu_{\mu}$-dominated beam with a peak energy of $3\,\mathrm{GeV}$. The data, from an exposure of $10. Read More

2016Jul
Authors: Daya Bay, MINOS Collaborations, :, P. Adamson, F. P. An, I. Anghel, A. Aurisano, A. B. Balantekin, H. R. Band, G. Barr, M. Bishai, A. Blake, S. Blyth G. J. Bock, D. Bogert, D. Cao, G. F. Cao, J. Cao, S. V. Cao, T. J. Carroll, C. M. Castromonte, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, R. Chen, S. M. Chen, Y. Chen, Y. X. Chen, J. Cheng, J. -H. Cheng, Y. P. Chen, Z. K. Cheng, J. J. Cherwinka, S. Childress, M. C. Chu, A. Chukanov, J. A. B. Coelho, L. Corwin, D. Cronin-Hennessy, J. P. Cummings, J. de Arcos, S. De Rijck, Z. Y. Deng, A. V. Devan, N. E. Devenish, X. F. Ding, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, C. O. Escobar, J. J. Evans, E. Falk, G. J. Feldman, W. Flanagan, M. V. Frohne, M. Gabrielyan, H. R. Gallagher, S. Germani, R. Gill, R. A. Gomes, M. Gonchar, G. H. Gong, H. Gong, M. C. Goodman, P. Gouffon, N. Graf, R. Gran, M. Grassi, K. Grzelak, W. Q. Gu, M. Y. Guan, L. Guo, R. P. Guo, X. H. Guo, Z. Guo, A. Habig, R. W. Hackenburg, S. R. Hahn, R. Han, S. Hans, J. Hartnell, R. Hatcher, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, A. Holin, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, J. Huang, X. T. Huang, P. Huber, W. Huo, G. Hussain, J. Hylen, G. M. Irwin, Z. Isvan, D. E. Jaffe, P. Jaffke, C. James, K. L. Jen, D. Jensen, S. Jetter, X. L. Ji, X. P. Ji, J. B. Jiao, R. A. Johnson, J. K. de Jong, J. Joshi, T. Kafka, L. Kang, S. M. S. Kasahara, S. H. Kettell, S. Kohn, G. Koizumi, M. Kordosky, M. Kramer, A. Kreymer, 1 K. K. Kwan, M. W. Kwok, T. Kwok, K. Lang, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling J. M. Link, P. J. Litchfield, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. C. Liu, J. L. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, P. Lucas, K. B. Luk, Z. Lv, Q. M. Ma, X. B. Ma, X. Y. Ma, Y. Q. Ma, Y. Malyshkin, W. A. Mann, M. L. Marshak, D. A. Martinez Caicedo, N. Mayer, K. T. McDonald, C. McGivern, R. D. McKeown, M. M. Medeiros, R. Mehdiyev, J. R. Meier, M. D. Messier, W. H. Miller, S. R. Mishra, I. Mitchell, M. Mooney, C. D. Moore, L. Mualem, J. Musser, Y. Nakajima, D. Naples, J. Napolitano, D. Naumov, E. Naumova, J. K. Nelson, H. B. Newman, H. Y. Ngai, R. J. Nichol, Z. Ning, A. Nowak, J. O'Connor, J. P. Ochoa-Ricoux, A. Olshevskiy, M. Orchanian, R., R. B. Pahlka, J. Paley, H. -R. Pan, J. Park, R. B. Patterson, S. Patton, G. Pawloski, V. Pec, J. C. Peng, A. Perch, M. M. Pfutzner, D. D. Phan, S. Phan-Budd, L. Pinsky, R. K. Plunkett, N. Poonthottathil, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, X. Qiu, A. Radovic, N. Raper, B. Rebel, J. Ren, C. Rosenfeld, R. Rosero, B. Roskovec, X. C. Ruan, H. A. Rubin, P. Sail, M. C. Sanchez, J. Schneps, A. Schreckenberger, P. Schreiner, R. Sharma, S. Moed Sher, A. Sousa, H. Steiner, G. X. Sun, J. L. Sun, N. Tagg, R. L. Talaga, W. Tang, D. Taychenachev, J. Thomas, M. A. Thomson, X. Tian A. Timmons, J. Todd, S. C. Tognini, R. Toner, D. Torretta, K. Treskov, K. V. Tsang, C. E. Tull, G. Tzanakos, J. Urheim, P. Vahle, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. M. Wang, R. C. Webb, A. Weber, H. Y. Wei, L. J. Wen, K. Whisnant, C. White, L. Whitehead L. H. Whitehead, T. Wise, S. G. Wojcicki, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, W. J. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. L. Xu, J. Y. Xu, Y. Xu, T. Xue, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye., Z. Ye, M. Yeh, B. L. Young, Z. Y. Yu, S. Zeng, L. ZhanC. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Z. J. Zhang, Z. P. Zhang, Z. Y. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

Searches for a light sterile neutrino have been performed independently by the MINOS and the Daya Bay experiments using the muon (anti)neutrino and electron antineutrino disappearance channels, respectively. In this Letter, results from both experiments are combined with those from the Bugey-3 reactor neutrino experiment to constrain oscillations into light sterile neutrinos. The three experiments are sensitive to complementary regions of parameter space, enabling the combined analysis to probe regions allowed by the LSND and MiniBooNE experiments in a minimally extended four-neutrino flavor framework. Read More

2016Jun
Affiliations: 1HKS, 2HKS, 3HKS, 4HKS, 5HKS, 6HKS, 7HKS, 8HKS, 9HKS, 10HKS, 11HKS, 12HKS, 13HKS, 14HKS, 15HKS, 16HKS, 17HKS, 18HKS, 19HKS, 20HKS, 21HKS, 22HKS, 23HKS, 24HKS, 25HKS, 26HKS, 27HKS, 28HKS, 29HKS, 30HKS, 31HKS, 32HKS, 33HKS, 34HKS, 35HKS, 36HKS, 37HKS, 38HKS, 39HKS, 40HKS, 41HKS, 42HKS, 43HKS, 44HKS, 45HKS, 46HKS, 47HKS, 48HKS, 49HKS, 50HKS, 51HKS, 52HKS, 53HKS, 54HKS, 55HKS, 56HKS, 57HKS, 58HKS, 59HKS, 60HKS, 61HKS, 62HKS, 63HKS, 64HKS, 65HKS, 66HKS, 67HKS, 68HKS, 69HKS, 70HKS, 71HKS, 72HKS, 73HKS, 74HKS, 75HKS, 76HKS, 77HKS, 78HKS, 79HKS, 80HKS, 81HKS, 82HKS, 83HKS, 84HKS, 85HKS, 86HKS

The missing mass spectroscopy of the $^{7}_{\Lambda}$He hypernucleus was performed, using the $^{7}$Li$(e,e^{\prime}K^{+})^{7}_{\Lambda}$He reaction at the Thomas Jefferson National Accelerator Facility Hall C. The $\Lambda$ binding energy of the ground state (1/2$^{+}$) was determined with a smaller error than that of the previous measurement, being $B_{\Lambda}$ = 5.55 $\pm$ 0. Read More

In mobile crowd sensing networks data forwarding through opportunistic contacts between participants. Data is replicated to encountered participants. For optimizing data delivery ratio and reducing redundant data a lot of data forwarding schemes, which selectively replicate data to encountered participants through node's data forwarding metric are proposed. Read More

2016May
Authors: P. Adamson, I. Anghel, A. Aurisano, G. Barr, M. Bishai, A. Blake, G. J. Bock, D. Bogert, S. V. Cao, T. J. Carroll, C. M. Castromonte, R. Chen, S. Childress, J. A. B. Coelho, L. Corwin, D. Cronin-Hennessy, J. K. de Jong, S. de Rijck, A. V. Devan, N. E. Devenish, M. V. Diwan, C. O. Escobar, J. J. Evans, E. Falk, G. J. Feldman, W. Flanagan, M. V. Frohne, M. Gabrielyan, H. R. Gallagher, S. Germani, R. A. Gomes, M. C. Goodman, P. Gouffon, N. Graf, R. Gran, K. Grzelak, A. Habig, S. R. Hahn, J. Hartnell, R. Hatcher, A. Holin, J. Huang, J. Hylen, G. M. Irwin, Z. Isvan, C. James, D. Jensen, T. Kafka, S. M. S. Kasahara, G. Koizumi, M. Kordosky, A. Kreymer, K. Lang, J. Ling, P. J. Litchfield, P. Lucas, W. A. Mann, M. L. Marshak, N. Mayer, C. McGivern, M. M. Medeiros, R. Mehdiyev, J. R. Meier, M. D. Messier, W. H. Miller, S. R. Mishra, S. Moed Sher, C. D. Moore, L. Mualem, J. Musser, D. Naples, J. K. Nelson, H. B. Newman, R. J. Nichol, J. A. Nowak, J. O'Connor, M. Orchanian, R. B. Pahlka, J. Paley, R. B. Patterson, G. Pawloski, A. Perch, M. M. Pfützner, D. D. Phan, S. Phan-Budd, R. K. Plunkett, N. Poonthottathil, X. Qiu, A. Radovic, B. Rebel, C. Rosenfeld, H. A. Rubin, P. Sail, M. C. Sanchez, J. Schneps, A. Schreckenberger, P. Schreiner, R. Sharma, A. Sousa, N. Tagg, R. L. Talaga, J. Thomas, M. A. Thomson, X. Tian, A. Timmons, J. Todd, S. C. Tognini, R. Toner, D. Torretta, G. Tzanakos, J. Urheim, P. Vahle, B. Viren, A. Weber, R. C. Webb, C. White, L. Whitehead, L. H. Whitehead, S. G. Wojcicki, R. Zwaska

We report new constraints on flavor-changing non-standard neutrino interactions from the MINOS long-baseline experiment using $\nu_{e}$ and $\bar{\nu}_{e}$ appearance candidate events from predominantly $\nu_{\mu}$ and $\bar{\nu}_{\mu}$ beams. We used a statistical selection algorithm to separate $\nu_{e}$ candidates from background events, enabling an analysis of the combined MINOS neutrino and antineutrino data. We observe no deviations from standard neutrino mixing, and thus place constraints on the non-standard interaction matter effect, $|\varepsilon_{e\tau}|$, and phase, $(\delta_{CP}+\delta_{e\tau})$, using a thirty-bin likelihood fit. Read More

Recently, there is rising interest in modelling the interactions of two sentences with deep neural networks. However, most of the existing methods encode two sequences with separate encoders, in which a sentence is encoded with little or no information from the other sentence. In this paper, we propose a deep architecture to model the strong interaction of sentence pair with two coupled-LSTMs. Read More

Neural network based methods have obtained great progress on a variety of natural language processing tasks. However, in most previous works, the models are learned based on single-task supervised objectives, which often suffer from insufficient training data. In this paper, we use the multi-task learning framework to jointly learn across multiple related tasks. Read More

We report, in theory and experiment, on a novel class of controlled light capsules with nearly perfect darkness, directly employing intrinsic properties of modified Bessel-Gauss beams. These beams are able to naturally create three-dimensional bottle-shaped region during propagation as long as the parameters are properly chosen. Remarkably, the optical bottle can be controlled to demonstrate various geometries through tuning the beam parameters, thereby leading to an adjustable light capsule. Read More

2016May
Authors: P. Adamson, I. Anghel, A. Aurisano, G. Barr, M. Bishai, A. Blake, G. J. Bock, D. Bogert, S. V. Cao, T. J. Carroll, C. M. Castromonte, R. Chen, S. Childress, J. A. B. Coelho, L. Corwin, D. Cronin-Hennessy, J. K. de Jong, S. de Rijck, A. V. Devan, N. E. Devenish, M. V. Diwan, C. O. Escobar, J. J. Evans, E. Falk, G. J. Feldman, W. Flanagan, M. V. Frohne, M. Gabrielyan, H. R. Gallagher, S. Germani, R. A. Gomes, M. C. Goodman, P. Gouffon, N. Graf, R. Gran, K. Grzelak, A. Habig, S. R. Hahn, J. Hartnell, R. Hatcher, A. Holin, J. Huang, J. Hylen, G. M. Irwin, Z. Isvan, C. James, D. Jensen, T. Kafka, S. M. S. Kasahara, G. Koizumi, M. Kordosky, A. Kreymer, K. Lang, J. Ling, P. J. Litchfield, P. Lucas, W. A. Mann, M. L. Marshak, N. Mayer, C. McGivern, M. M. Medeiros, R. Mehdiyev, J. R. Meier, M. D. Messier, W. H. Miller, S. R. Mishra, S. Moed Sher, C. D. Moore, L. Mualem, J. Musser, D. Naples, J. K. Nelson, H. B. Newman, R. J. Nichol, J. A. Nowak, J. O'Connor, M. Orchanian, R. B. Pahlka, J. Paley, R. B. Patterson, G. Pawloski, A. Perch, M. M. Pfützner, D. D. Phan, S. Phan-Budd, R. K. Plunkett, N. Poonthottathil, X. Qiu, A. Radovic, B. Rebel, C. Rosenfeld, H. A. Rubin, P. Sail, M. C. Sanchez, J. Schneps, A. Schreckenberger, P. Schreiner, R. Sharma, A. Sousa, N. Tagg, R. L. Talaga, J. Thomas, M. A. Thomson, X. Tian, A. Timmons, J. Todd, S. C. Tognini, R. Toner, D. Torretta, G. Tzanakos, J. Urheim, P. Vahle, B. Viren, A. Weber, R. C. Webb, C. White, L. Whitehead, L. H. Whitehead, S. G. Wojcicki, R. Zwaska

Data from the MINOS experiment has been used to search for mixing between muon neutrinos and muon antineutrinos using a time-independent Lorentz-violating formalism derived from the Standard-Model Extension (SME). MINOS is uniquely capable of searching for muon neutrino-antineutrino mixing given its long baseline and ability to distinguish between neutrinos and antineutrinos on an event-by-event basis. Neutrino and antineutrino interactions were observed in the MINOS Near and Far Detectors from an exposure of 10. Read More

In Ca1-xRExFeAs2 (RE= rare earth), an antiferromagnetic (AFM) phase as well as a structural transition has been reported, even in the electron-overdoped regime. Here we investigated the temperature-dependent in-plane optical spectroscopy of overdoped Ca0.77Nd0. Read More

Recently, the long short-term memory neural network (LSTM) has attracted wide interest due to its success in many tasks. LSTM architecture consists of a memory cell and three gates, which looks similar to the neuronal networks in the brain. However, there still lacks the evidence of the cognitive plausibility of LSTM architecture as well as its working mechanism. Read More

Ferroelectric domain inversion and its effect on the stability of lithium niobate thin films on insulator (LNOI) are experimentally characterized. Two sets of specimens with different thicknesses varying from submicron to microns are selected. For micron thick samples (~28 um), domain structures are achieved by pulsed electric field poling with electrodes patterned via photolithography. Read More

Flexible electronic devices require the integration of multiple crucial components on soft substrates to achieve their functions. In particular, memory devices are the fundamental component for data storage and processing in flexible electronics. Here, we present flexible MgO barrier magnetic tunnel junction (MTJ) devices fabricated using a transfer printing process, which exhibit reliable and stable operation under substantial deformation of the device substrates. Read More

2016Feb
Authors: Minos Collaboration, P. Adamson, I. Anghel, A. Aurisano, G. Barr, M. Bishai, A. Blake, G. J. Bock, D. Bogert, S. V. Cao, T. J. Carroll, C. M. Castromonte, R. Chen, S. Childress, J. A. B. Coelho, L. Corwin, D. Cronin-Hennessy, J. K. de Jong, S. De Rijck, A. V. Devan, N. E. Devenish, M. V. Diwan, C. O. Escobar, J. J. Evans, E. Falk, G. J. Feldman, W. Flanagan, M. V. Frohne, M. Gabrielyan, H. R. Gallagher, S. Germani, R. A. Gomes, M. C. Goodman, P. Gouffon, N. Graf, R. Gran, K. Grzelak, A. Habig, S. R. Hahn, J. Hartnell, R. Hatcher, A. Holin, J. Huang, J. Hylen, G. M. Irwin, Z. Isvan, C. James, D. Jensen, T. Kafka, S. M. S. Kasahara, G. Koizumi, M. Kordosky, A. Kreymer, K. Lang, J. Ling, P. J. Litchfield, P. Lucas, W. A. Mann, M. L. Marshak, N. Mayer, C. McGivern, M. M. Medeiros, R. Mehdiyev, J. R. Meier, M. D. Messier, W. H. Miller, S. R. Mishra, S. Moed Sher, C. D. Moore, L. Mualem, J. Musser, D. Naples, J. K. Nelson, H. B. Newman, R. J. Nichol, J. A. Nowak, J. O'Connor, M. Orchanian, R. B. Pahlka, J. Paley, R. B. Patterson, G. Pawloski, A. Perch, M. Pfützner, D. D. Phan, S. Phan-Budd, R. K. Plunkett, N. Poonthottathil, X. Qiu, A. Radovic, B. Rebel, C. Rosenfeld, H. A. Rubin, P. Sail, M. C. Sanchez, J. Schneps, A. Schreckenberger, P. Schreiner, R. Sharma, A. Sousa, N. Tagg, R. L. Talaga, J. Thomas, M. A. Thomson, X. Tian, A. Timmons, J. Todd, S. C. Tognini, R. Toner, D. Torretta, G. Tzanakos, J. Urheim, P. Vahle, B. Viren, A. Weber, R. C. Webb, C. White, L. Whitehead, L. H. Whitehead, S. G. Wojcicki, R. Zwaska

The charge ratio, $R_\mu = N_{\mu^+}/N_{\mu^-}$, for cosmogenic multiple-muon events observed at an under- ground depth of 2070 mwe has been measured using the magnetized MINOS Far Detector. The multiple-muon events, recorded nearly continuously from August 2003 until April 2012, comprise two independent data sets imaged with opposite magnetic field polarities, the comparison of which allows the systematic uncertainties of the measurement to be minimized. The multiple-muon charge ratio is determined to be $R_\mu = 1. Read More

We consider the uncapacitated facility location problem with (linear) penalty function and show that a modified JMS algorithm, combined with a randomized LP rounding technique due to Byrka-Aardal[1], Li[14] and Li et al.[16] yields 1.488 approximation, improving the factor 1. Read More

2016Jan
Authors: P. Adamson1, C. Ader2, M. Andrews3, N. Anfimov4, I. Anghel5, K. Arms6, E. Arrieta-Diaz7, A. Aurisano8, D. S. Ayres9, C. Backhouse10, M. Baird11, B. A. Bambah12, K. Bays13, R. Bernstein14, M. Betancourt15, V. Bhatnagar16, B. Bhuyan17, J. Bian18, K. Biery19, T. Blackburn20, V. Bocean21, D. Bogert22, A. Bolshakova23, M. Bowden24, C. Bower25, D. Broemmelsiek26, C. Bromberg27, G. Brunetti28, X. Bu29, A. Butkevich30, D. Capista31, E. Catano-Mur32, T. R. Chase33, S. Childress34, B. C. Choudhary35, B. Chowdhury36, T. E. Coan37, J. A. B. Coelho38, M. Colo39, J. Cooper40, L. Corwin41, D. Cronin-Hennessy42, A. Cunningham43, G. S. Davies44, J. P. Davies45, M. Del Tutto46, P. F. Derwent47, K. N. Deepthi48, D. Demuth49, S. Desai50, G. Deuerling51, A. Devan52, J. Dey53, R. Dharmapalan54, P. Ding55, S. Dixon56, Z. Djurcic57, E. C. Dukes58, H. Duyang59, R. Ehrlich60, G. J. Feldman61, N. Felt62, E. J. Fenyves63, E. Flumerfelt64, S. Foulkes65, M. J. Frank66, W. Freeman67, M. Gabrielyan68, H. R. Gallagher69, M. Gebhard70, T. Ghosh71, W. Gilbert72, A. Giri73, S. Goadhouse74, R. A. Gomes75, L. Goodenough76, M. C. Goodman77, V. Grichine78, N. Grossman79, R. Group80, J. Grudzinski81, V. Guarino82, B. Guo83, A. Habig84, T. Handler85, J. Hartnell86, R. Hatcher87, A. Hatzikoutelis88, K. Heller89, C. Howcroft90, J. Huang91, X. Huang92, J. Hylen93, M. Ishitsuka94, F. Jediny95, C. Jensen96, D. Jensen97, C. Johnson98, H. Jostlein99, G. K. Kafka100, Y. Kamyshkov101, S. M. S. Kasahara102, S. Kasetti103, K. Kephart104, G. Koizumi105, S. Kotelnikov106, I. Kourbanis107, Z. Krahn108, V. Kravtsov109, A. Kreymer110, Ch. Kulenberg111, A. Kumar112, T. Kutnink113, R. Kwarciancy114, J. Kwong115, K. Lang116, A. Lee117, W. M. Lee118, K. Lee119, S. Lein120, J. Liu121, M. Lokajicek122, J. Lozier123, Q. Lu124, P. Lucas125, S. Luchuk126, P. Lukens127, G. Lukhanin128, S. Magill129, K. Maan130, W. A. Mann131, M. L. Marshak132, M. Martens133, J. Martincik134, P. Mason135, K. Matera136, M. Mathis137, V. Matveev138, N. Mayer139, E. McCluskey140, R. Mehdiyev141, H. Merritt142, M. D. Messier143, H. Meyer144, T. Miao145, D. Michael146, S. P. Mikheyev147, W. H. Miller148, S. R. Mishra149, R. Mohanta150, A. Moren151, L. Mualem152, M. Muether153, S. Mufson154, J. Musser155, H. B. Newman156, J. K. Nelson157, E. Niner158, A. Norman159, J. Nowak160, Y. Oksuzian161, A. Olshevskiy162, J. Oliver163, T. Olson164, J. Paley165, P. Pandey166, A. Para167, R. B. Patterson168, G. Pawloski169, N. Pearson170, D. Perevalov171, D. Pershey172, E. Peterson173, R. Petti174, S. Phan-Budd175, L. Piccoli176, A. Pla-Dalmau177, R. K. Plunkett178, R. Poling179, B. Potukuchi180, F. Psihas181, D. Pushka182, X. Qiu183, N. Raddatz184, A. Radovic185, R. A. Rameika186, R. Ray187, B. Rebel188, R. Rechenmacher189, B. Reed190, R. Reilly191, D. Rocco192, D. Rodkin193, K. Ruddick194, R. Rusack195, V. Ryabov196, K. Sachdev197, S. Sahijpal198, H. Sahoo199, O. Samoylov200, M. C. Sanchez201, N. Saoulidou202, P. Schlabach203, J. Schneps204, R. Schroeter205, J. Sepulveda-Quiroz206, P. Shanahan207, B. Sherwood208, A. Sheshukov209, J. Singh210, V. Singh211, A. Smith212, D. Smith213, J. Smolik214, N. Solomey215, A. Sotnikov216, A. Sousa217, K. Soustruznik218, Y. Stenkin219, M. Strait220, L. Suter221, R. L. Talaga222, M. C. Tamsett223, S. Tariq224, P. Tas225, R. J. Tesarek226, R. B. Thayyullathil227, K. Thomsen228, X. Tian229, S. C. Tognini230, R. Toner231, J. Trevor232, G. Tzanakos233, J. Urheim234, P. Vahle235, L. Valerio236, L. Vinton237, T. Vrba238, A. V. Waldron239, B. Wang240, Z. Wang241, A. Weber242, A. Wehmann243, D. Whittington244, N. Wilcer245, R. Wildberger246, D. Wildman247, K. Williams248, S. G. Wojcicki249, K. Wood250, M. Xiao251, T. Xin252, N. Yadav253, S. Yang254, S. Zadorozhnyy255, J. Zalesak256, B. Zamorano257, A. Zhao258, J. Zirnstein259, R. Zwaska260
Affiliations: 1the NOvA Collaboration, 2the NOvA Collaboration, 3the NOvA Collaboration, 4the NOvA Collaboration, 5the NOvA Collaboration, 6the NOvA Collaboration, 7the NOvA Collaboration, 8the NOvA Collaboration, 9the NOvA Collaboration, 10the NOvA Collaboration, 11the NOvA Collaboration, 12the NOvA Collaboration, 13the NOvA Collaboration, 14the NOvA Collaboration, 15the NOvA Collaboration, 16the NOvA Collaboration, 17the NOvA Collaboration, 18the NOvA Collaboration, 19the NOvA Collaboration, 20the NOvA Collaboration, 21the NOvA Collaboration, 22the NOvA Collaboration, 23the NOvA Collaboration, 24the NOvA Collaboration, 25the NOvA Collaboration, 26the NOvA Collaboration, 27the NOvA Collaboration, 28the NOvA Collaboration, 29the NOvA Collaboration, 30the NOvA Collaboration, 31the NOvA Collaboration, 32the NOvA Collaboration, 33the NOvA Collaboration, 34the NOvA Collaboration, 35the NOvA Collaboration, 36the NOvA Collaboration, 37the NOvA Collaboration, 38the NOvA Collaboration, 39the NOvA Collaboration, 40the NOvA Collaboration, 41the NOvA Collaboration, 42the NOvA Collaboration, 43the NOvA Collaboration, 44the NOvA Collaboration, 45the NOvA Collaboration, 46the NOvA Collaboration, 47the NOvA Collaboration, 48the NOvA Collaboration, 49the NOvA Collaboration, 50the NOvA Collaboration, 51the NOvA Collaboration, 52the NOvA Collaboration, 53the NOvA Collaboration, 54the NOvA Collaboration, 55the NOvA Collaboration, 56the NOvA Collaboration, 57the NOvA Collaboration, 58the NOvA Collaboration, 59the NOvA Collaboration, 60the NOvA Collaboration, 61the NOvA Collaboration, 62the NOvA Collaboration, 63the NOvA Collaboration, 64the NOvA Collaboration, 65the NOvA Collaboration, 66the NOvA Collaboration, 67the NOvA Collaboration, 68the NOvA Collaboration, 69the NOvA Collaboration, 70the NOvA Collaboration, 71the NOvA Collaboration, 72the NOvA Collaboration, 73the NOvA Collaboration, 74the NOvA Collaboration, 75the NOvA Collaboration, 76the NOvA Collaboration, 77the NOvA Collaboration, 78the NOvA Collaboration, 79the NOvA Collaboration, 80the NOvA Collaboration, 81the NOvA Collaboration, 82the NOvA Collaboration, 83the NOvA Collaboration, 84the NOvA Collaboration, 85the NOvA Collaboration, 86the NOvA Collaboration, 87the NOvA Collaboration, 88the NOvA Collaboration, 89the NOvA Collaboration, 90the NOvA Collaboration, 91the NOvA Collaboration, 92the NOvA Collaboration, 93the NOvA Collaboration, 94the NOvA Collaboration, 95the NOvA Collaboration, 96the NOvA Collaboration, 97the NOvA Collaboration, 98the NOvA Collaboration, 99the NOvA Collaboration, 100the NOvA Collaboration, 101the NOvA Collaboration, 102the NOvA Collaboration, 103the NOvA Collaboration, 104the NOvA Collaboration, 105the NOvA Collaboration, 106the NOvA Collaboration, 107the NOvA Collaboration, 108the NOvA Collaboration, 109the NOvA Collaboration, 110the NOvA Collaboration, 111the NOvA Collaboration, 112the NOvA Collaboration, 113the NOvA Collaboration, 114the NOvA Collaboration, 115the NOvA Collaboration, 116the NOvA Collaboration, 117the NOvA Collaboration, 118the NOvA Collaboration, 119the NOvA Collaboration, 120the NOvA Collaboration, 121the NOvA Collaboration, 122the NOvA Collaboration, 123the NOvA Collaboration, 124the NOvA Collaboration, 125the NOvA Collaboration, 126the NOvA Collaboration, 127the NOvA Collaboration, 128the NOvA Collaboration, 129the NOvA Collaboration, 130the NOvA Collaboration, 131the NOvA Collaboration, 132the NOvA Collaboration, 133the NOvA Collaboration, 134the NOvA Collaboration, 135the NOvA Collaboration, 136the NOvA Collaboration, 137the NOvA Collaboration, 138the NOvA Collaboration, 139the NOvA Collaboration, 140the NOvA Collaboration, 141the NOvA Collaboration, 142the NOvA Collaboration, 143the NOvA Collaboration, 144the NOvA Collaboration, 145the NOvA Collaboration, 146the NOvA Collaboration, 147the NOvA Collaboration, 148the NOvA Collaboration, 149the NOvA Collaboration, 150the NOvA Collaboration, 151the NOvA Collaboration, 152the NOvA Collaboration, 153the NOvA Collaboration, 154the NOvA Collaboration, 155the NOvA Collaboration, 156the NOvA Collaboration, 157the NOvA Collaboration, 158the NOvA Collaboration, 159the NOvA Collaboration, 160the NOvA Collaboration, 161the NOvA Collaboration, 162the NOvA Collaboration, 163the NOvA Collaboration, 164the NOvA Collaboration, 165the NOvA Collaboration, 166the NOvA Collaboration, 167the NOvA Collaboration, 168the NOvA Collaboration, 169the NOvA Collaboration, 170the NOvA Collaboration, 171the NOvA Collaboration, 172the NOvA Collaboration, 173the NOvA Collaboration, 174the NOvA Collaboration, 175the NOvA Collaboration, 176the NOvA Collaboration, 177the NOvA Collaboration, 178the NOvA Collaboration, 179the NOvA Collaboration, 180the NOvA Collaboration, 181the NOvA Collaboration, 182the NOvA Collaboration, 183the NOvA Collaboration, 184the NOvA Collaboration, 185the NOvA Collaboration, 186the NOvA Collaboration, 187the NOvA Collaboration, 188the NOvA Collaboration, 189the NOvA Collaboration, 190the NOvA Collaboration, 191the NOvA Collaboration, 192the NOvA Collaboration, 193the NOvA Collaboration, 194the NOvA Collaboration, 195the NOvA Collaboration, 196the NOvA Collaboration, 197the NOvA Collaboration, 198the NOvA Collaboration, 199the NOvA Collaboration, 200the NOvA Collaboration, 201the NOvA Collaboration, 202the NOvA Collaboration, 203the NOvA Collaboration, 204the NOvA Collaboration, 205the NOvA Collaboration, 206the NOvA Collaboration, 207the NOvA Collaboration, 208the NOvA Collaboration, 209the NOvA Collaboration, 210the NOvA Collaboration, 211the NOvA Collaboration, 212the NOvA Collaboration, 213the NOvA Collaboration, 214the NOvA Collaboration, 215the NOvA Collaboration, 216the NOvA Collaboration, 217the NOvA Collaboration, 218the NOvA Collaboration, 219the NOvA Collaboration, 220the NOvA Collaboration, 221the NOvA Collaboration, 222the NOvA Collaboration, 223the NOvA Collaboration, 224the NOvA Collaboration, 225the NOvA Collaboration, 226the NOvA Collaboration, 227the NOvA Collaboration, 228the NOvA Collaboration, 229the NOvA Collaboration, 230the NOvA Collaboration, 231the NOvA Collaboration, 232the NOvA Collaboration, 233the NOvA Collaboration, 234the NOvA Collaboration, 235the NOvA Collaboration, 236the NOvA Collaboration, 237the NOvA Collaboration, 238the NOvA Collaboration, 239the NOvA Collaboration, 240the NOvA Collaboration, 241the NOvA Collaboration, 242the NOvA Collaboration, 243the NOvA Collaboration, 244the NOvA Collaboration, 245the NOvA Collaboration, 246the NOvA Collaboration, 247the NOvA Collaboration, 248the NOvA Collaboration, 249the NOvA Collaboration, 250the NOvA Collaboration, 251the NOvA Collaboration, 252the NOvA Collaboration, 253the NOvA Collaboration, 254the NOvA Collaboration, 255the NOvA Collaboration, 256the NOvA Collaboration, 257the NOvA Collaboration, 258the NOvA Collaboration, 259the NOvA Collaboration, 260the NOvA Collaboration

We report results from the first search for $\nu_\mu\to\nu_e$ transitions by the NOvA experiment. In an exposure equivalent to $2.74\times10^{20}$ protons-on-target in the upgraded NuMI beam at Fermilab, we observe 6 events in the Far Detector, compared to a background expectation of $0. Read More

2016Jan
Authors: P. Adamson1, C. Ader2, M. Andrews3, N. Anfimov4, I. Anghel5, K. Arms6, E. Arrieta-Diaz7, A. Aurisano8, D. Ayres9, C. Backhouse10, M. Baird11, B. A. Bambah12, K. Bays13, R. Bernstein14, M. Betancourt15, V. Bhatnagar16, B. Bhuyan17, J. Bian18, K. Biery19, T. Blackburn20, V. Bocean21, D. Bogert22, A. Bolshakova23, M. Bowden24, C. Bower25, D. Broemmelsiek26, C. Bromberg27, G. Brunetti28, X. Bu29, A. Butkevich30, D. Capista31, E. Catano-Mur32, T. R. Chase33, S. Childress34, B. C. Choudhary35, B. Chowdhury36, T. E. Coan37, J. A. B. Coelho38, M. Colo39, J. Cooper40, L. Corwin41, D. Cronin-Hennessy42, A. Cunningham43, G. S. Davies44, J. P. Davies45, M. Del Tutto46, P. F. Derwent47, K. N. Deepthi48, D. Demuth49, S. Desai50, G. Deuerling51, A. Devan52, J. Dey53, R. Dharmapalan54, P. Ding55, S. Dixon56, Z. Djurcic57, E. C. Dukes58, H. Duyang59, R. Ehrlich60, G. J. Feldman61, N. Felt62, E. J. Fenyves63, E. Flumerfelt64, S. Foulkes65, M. J. Frank66, W. Freeman67, M. Gabrielyan68, H. R. Gallagher69, M. Gebhard70, T. Ghosh71, W. Gilbert72, A. Giri73, S. Goadhouse74, R. A. Gomes75, L. Goodenough76, M. C. Goodman77, V. Grichine78, N. Grossman79, R. Group80, J. Grudzinski81, V. Guarino82, B. Guo83, A. Habig84, T. Handler85, J. Hartnell86, R. Hatcher87, A. Hatzikoutelis88, K. Heller89, C. Howcroft90, J. Huang91, X. Huang92, J. Hylen93, M. Ishitsuka94, F. Jediny95, C. Jensen96, D. Jensen97, C. Johnson98, H. Jostlein99, G. K. Kafka100, Y. Kamyshkov101, S. M. S. Kasahara102, S. Kasetti103, K. Kephart104, G. Koizumi105, S. Kotelnikov106, I. Kourbanis107, Z. Krahn108, V. Kravtsov109, A. Kreymer110, Ch. Kulenberg111, A. Kumar112, T. Kutnink113, R. Kwarciancy114, J. Kwong115, K. Lang116, A. Lee117, W. M. Lee118, K. Lee119, S. Lein120, J. Liu121, M. Lokajicek122, J. Lozier123, Q. Lu124, P. Lucas125, S. Luchuk126, P. Lukens127, G. Lukhanin128, S. Magill129, K. Maan130, W. A. Mann131, M. L. Marshak132, M. Martens133, J. Martincik134, P. Mason135, K. Matera136, M. Mathis137, V. Matveev138, N. Mayer139, E. McCluskey140, R. Mehdiyev141, H. Merritt142, M. D. Messier143, H. Meyer144, T. Miao145, D. Michael146, S. P. Mikheyev147, W. H. Miller148, S. R. Mishra149, R. Mohanta150, A. Moren151, L. Mualem152, M. Muether153, S. Mufson154, J. Musser155, H. B. Newman156, J. K. Nelson157, E. Niner158, A. Norman159, J. Nowak160, Y. Oksuzian161, A. Olshevskiy162, J. Oliver163, T. Olson164, J. Paley165, P. Pandey166, A. Para167, R. B. Patterson168, G. Pawloski169, N. Pearson170, D. Perevalov171, D. Pershey172, E. Peterson173, R. Petti174, S. Phan-Budd175, L. Piccoli176, A. Pla-Dalmau177, R. K. Plunkett178, R. Poling179, B. Potukuchi180, F. Psihas181, D. Pushka182, X. Qiu183, N. Raddatz184, A. Radovic185, R. A. Rameika186, R. Ray187, B. Rebel188, R. Rechenmacher189, B. Reed190, R. Reilly191, D. Rocco192, D. Rodkin193, K. Ruddick194, R. Rusack195, V. Ryabov196, K. Sachdev197, S. Sahijpal198, H. Sahoo199, O. Samoylov200, M. C. Sanchez201, N. Saoulidou202, P. Schlabach203, J. Schneps204, R. Schroeter205, J. Sepulveda-Quiroz206, P. Shanahan207, B. Sherwood208, A. Sheshukov209, J. Singh210, V. Singh211, A. Smith212, D. Smith213, J. Smolik214, N. Solomey215, A. Sotnikov216, A. Sousa217, K. Soustruznik218, Y. Stenkin219, M. Strait220, L. Suter221, R. L. Talaga222, M. C. Tamsett223, S. Tariq224, P. Tas225, R. J. Tesarek226, R. B. Thayyullathil227, K. Thomsen228, X. Tian229, S. C. Tognini230, R. Toner231, J. Trevor232, G. Tzanakos233, J. Urheim234, P. Vahle235, L. Valerio236, L. Vinton237, T. Vrba238, A. V. Waldron239, B. Wang240, Z. Wang241, A. Weber242, A. Wehmann243, D. Whittington244, N. Wilcer245, R. Wildberger246, D. Wildman247, K. Williams248, S. G. Wojcicki249, K. Wood250, M. Xiao251, T. Xin252, N. Yadav253, S. Yang254, S. Zadorozhnyy255, J. Zalesak256, B. Zamorano257, A. Zhao258, J. Zirnstein259, R. Zwaska260
Affiliations: 1the NOvA Collaboration, 2the NOvA Collaboration, 3the NOvA Collaboration, 4the NOvA Collaboration, 5the NOvA Collaboration, 6the NOvA Collaboration, 7the NOvA Collaboration, 8the NOvA Collaboration, 9the NOvA Collaboration, 10the NOvA Collaboration, 11the NOvA Collaboration, 12the NOvA Collaboration, 13the NOvA Collaboration, 14the NOvA Collaboration, 15the NOvA Collaboration, 16the NOvA Collaboration, 17the NOvA Collaboration, 18the NOvA Collaboration, 19the NOvA Collaboration, 20the NOvA Collaboration, 21the NOvA Collaboration, 22the NOvA Collaboration, 23the NOvA Collaboration, 24the NOvA Collaboration, 25the NOvA Collaboration, 26the NOvA Collaboration, 27the NOvA Collaboration, 28the NOvA Collaboration, 29the NOvA Collaboration, 30the NOvA Collaboration, 31the NOvA Collaboration, 32the NOvA Collaboration, 33the NOvA Collaboration, 34the NOvA Collaboration, 35the NOvA Collaboration, 36the NOvA Collaboration, 37the NOvA Collaboration, 38the NOvA Collaboration, 39the NOvA Collaboration, 40the NOvA Collaboration, 41the NOvA Collaboration, 42the NOvA Collaboration, 43the NOvA Collaboration, 44the NOvA Collaboration, 45the NOvA Collaboration, 46the NOvA Collaboration, 47the NOvA Collaboration, 48the NOvA Collaboration, 49the NOvA Collaboration, 50the NOvA Collaboration, 51the NOvA Collaboration, 52the NOvA Collaboration, 53the NOvA Collaboration, 54the NOvA Collaboration, 55the NOvA Collaboration, 56the NOvA Collaboration, 57the NOvA Collaboration, 58the NOvA Collaboration, 59the NOvA Collaboration, 60the NOvA Collaboration, 61the NOvA Collaboration, 62the NOvA Collaboration, 63the NOvA Collaboration, 64the NOvA Collaboration, 65the NOvA Collaboration, 66the NOvA Collaboration, 67the NOvA Collaboration, 68the NOvA Collaboration, 69the NOvA Collaboration, 70the NOvA Collaboration, 71the NOvA Collaboration, 72the NOvA Collaboration, 73the NOvA Collaboration, 74the NOvA Collaboration, 75the NOvA Collaboration, 76the NOvA Collaboration, 77the NOvA Collaboration, 78the NOvA Collaboration, 79the NOvA Collaboration, 80the NOvA Collaboration, 81the NOvA Collaboration, 82the NOvA Collaboration, 83the NOvA Collaboration, 84the NOvA Collaboration, 85the NOvA Collaboration, 86the NOvA Collaboration, 87the NOvA Collaboration, 88the NOvA Collaboration, 89the NOvA Collaboration, 90the NOvA Collaboration, 91the NOvA Collaboration, 92the NOvA Collaboration, 93the NOvA Collaboration, 94the NOvA Collaboration, 95the NOvA Collaboration, 96the NOvA Collaboration, 97the NOvA Collaboration, 98the NOvA Collaboration, 99the NOvA Collaboration, 100the NOvA Collaboration, 101the NOvA Collaboration, 102the NOvA Collaboration, 103the NOvA Collaboration, 104the NOvA Collaboration, 105the NOvA Collaboration, 106the NOvA Collaboration, 107the NOvA Collaboration, 108the NOvA Collaboration, 109the NOvA Collaboration, 110the NOvA Collaboration, 111the NOvA Collaboration, 112the NOvA Collaboration, 113the NOvA Collaboration, 114the NOvA Collaboration, 115the NOvA Collaboration, 116the NOvA Collaboration, 117the NOvA Collaboration, 118the NOvA Collaboration, 119the NOvA Collaboration, 120the NOvA Collaboration, 121the NOvA Collaboration, 122the NOvA Collaboration, 123the NOvA Collaboration, 124the NOvA Collaboration, 125the NOvA Collaboration, 126the NOvA Collaboration, 127the NOvA Collaboration, 128the NOvA Collaboration, 129the NOvA Collaboration, 130the NOvA Collaboration, 131the NOvA Collaboration, 132the NOvA Collaboration, 133the NOvA Collaboration, 134the NOvA Collaboration, 135the NOvA Collaboration, 136the NOvA Collaboration, 137the NOvA Collaboration, 138the NOvA Collaboration, 139the NOvA Collaboration, 140the NOvA Collaboration, 141the NOvA Collaboration, 142the NOvA Collaboration, 143the NOvA Collaboration, 144the NOvA Collaboration, 145the NOvA Collaboration, 146the NOvA Collaboration, 147the NOvA Collaboration, 148the NOvA Collaboration, 149the NOvA Collaboration, 150the NOvA Collaboration, 151the NOvA Collaboration, 152the NOvA Collaboration, 153the NOvA Collaboration, 154the NOvA Collaboration, 155the NOvA Collaboration, 156the NOvA Collaboration, 157the NOvA Collaboration, 158the NOvA Collaboration, 159the NOvA Collaboration, 160the NOvA Collaboration, 161the NOvA Collaboration, 162the NOvA Collaboration, 163the NOvA Collaboration, 164the NOvA Collaboration, 165the NOvA Collaboration, 166the NOvA Collaboration, 167the NOvA Collaboration, 168the NOvA Collaboration, 169the NOvA Collaboration, 170the NOvA Collaboration, 171the NOvA Collaboration, 172the NOvA Collaboration, 173the NOvA Collaboration, 174the NOvA Collaboration, 175the NOvA Collaboration, 176the NOvA Collaboration, 177the NOvA Collaboration, 178the NOvA Collaboration, 179the NOvA Collaboration, 180the NOvA Collaboration, 181the NOvA Collaboration, 182the NOvA Collaboration, 183the NOvA Collaboration, 184the NOvA Collaboration, 185the NOvA Collaboration, 186the NOvA Collaboration, 187the NOvA Collaboration, 188the NOvA Collaboration, 189the NOvA Collaboration, 190the NOvA Collaboration, 191the NOvA Collaboration, 192the NOvA Collaboration, 193the NOvA Collaboration, 194the NOvA Collaboration, 195the NOvA Collaboration, 196the NOvA Collaboration, 197the NOvA Collaboration, 198the NOvA Collaboration, 199the NOvA Collaboration, 200the NOvA Collaboration, 201the NOvA Collaboration, 202the NOvA Collaboration, 203the NOvA Collaboration, 204the NOvA Collaboration, 205the NOvA Collaboration, 206the NOvA Collaboration, 207the NOvA Collaboration, 208the NOvA Collaboration, 209the NOvA Collaboration, 210the NOvA Collaboration, 211the NOvA Collaboration, 212the NOvA Collaboration, 213the NOvA Collaboration, 214the NOvA Collaboration, 215the NOvA Collaboration, 216the NOvA Collaboration, 217the NOvA Collaboration, 218the NOvA Collaboration, 219the NOvA Collaboration, 220the NOvA Collaboration, 221the NOvA Collaboration, 222the NOvA Collaboration, 223the NOvA Collaboration, 224the NOvA Collaboration, 225the NOvA Collaboration, 226the NOvA Collaboration, 227the NOvA Collaboration, 228the NOvA Collaboration, 229the NOvA Collaboration, 230the NOvA Collaboration, 231the NOvA Collaboration, 232the NOvA Collaboration, 233the NOvA Collaboration, 234the NOvA Collaboration, 235the NOvA Collaboration, 236the NOvA Collaboration, 237the NOvA Collaboration, 238the NOvA Collaboration, 239the NOvA Collaboration, 240the NOvA Collaboration, 241the NOvA Collaboration, 242the NOvA Collaboration, 243the NOvA Collaboration, 244the NOvA Collaboration, 245the NOvA Collaboration, 246the NOvA Collaboration, 247the NOvA Collaboration, 248the NOvA Collaboration, 249the NOvA Collaboration, 250the NOvA Collaboration, 251the NOvA Collaboration, 252the NOvA Collaboration, 253the NOvA Collaboration, 254the NOvA Collaboration, 255the NOvA Collaboration, 256the NOvA Collaboration, 257the NOvA Collaboration, 258the NOvA Collaboration, 259the NOvA Collaboration, 260the NOvA Collaboration

This paper reports the first measurement using the NOvA detectors of $\nu_\mu$ disappearance in a $\nu_\mu$ beam. The analysis uses a 14 kton-equivalent exposure of $2.74 \times 10^{20}$ protons-on-target from the Fermilab NuMI beam. Read More

Spin transfer torques allow the electrical manipulation of the magnetization at room temperature, which is desirable in spintronic devices such as spin transfer torque memories. When combined with spin-orbit coupling, they give rise to spin-orbit torques which are a more powerful tool for magnetization control and can enrich device functionalities. The engineering of spin-orbit torques, based mostly on the spin Hall effect, is being intensely pursued. Read More

Recently, word representation has been increasingly focused on for its excellent properties in representing the word semantics. Previous works mainly suffer from the problem of polysemy phenomenon. To address this problem, most of previous models represent words as multiple distributed vectors. Read More

We have systematically studied the nematic fluctuations in the electron-doped iron-based superconductor BaFe$_{2-x}$Ni$_x$As$_2$ by measuring the in-plane resistance change under uniaxial pressure. While the nematic quantum critical point can be identified through the measurements along the (110) direction as studied previously, quantum and thermal critical fluctuations cannot be distinguished due to similar Curie-Weiss-like behaviors. Here we find that a sizable pressure-dependent resistivity along the (100) direction is present in all doping levels, which is against the simple picture of an Ising-type nematic model. Read More

The magnetic properties of CaCo$_{2}$As$_{2}$ single crystal was systematically studied by using dc magnetization and magnetic torque measurements. A paramagnetic to antiferromagnetic transition occurs at $T_N$ = 74 K with Co spins being aligned parallel to the c axis. For $H \parallel c$, a field-induced spin-flop transition was observed below $T_N$ and a magnetic transition from antiferromagnetic to paramagnetic was inferred from the detailed analysis of magnetization and magnetic torque. Read More

We present a systematic study of both the temperature and frequency dependence of the optical response in TaAs, a material that has recently been realized to host the Weyl semimetal state. Our study reveals that the optical conductivity of TaAs features a narrow Drude response alongside a conspicuous linear dependence on frequency. The width of the Drude peak decreases upon cooling, following a $T^{2}$ temperature dependence which is expected for Weyl semimetals. Read More

2015Jul
Authors: P. Adamson, K. Anderson, M. Andrews, R. Andrews, I. Anghel, D. Augustine, A. Aurisano, S. Avvakumov, D. S. Ayres, B. Baller, B. Barish, G. Barr, W. L. Barrett, R. H. Bernstein, J. Biggs, M. Bishai, A. Blake, V. Bocean, G. J. Bock, D. J. Boehnlein, D. Bogert, K. Bourkland, S. V. Cao, C. M. Castromonte, S. Childress, B. C. Choudhary, J. A. B. Coelho, J. H. Cobb, L. Corwin, D. Crane, J. P. Cravens, D. Cronin-Hennessy, R. J. Ducar, J. K. de Jong, A. V. Devan, N. E. Devenish, M. V. Diwan, A. R. Erwin, C. O. Escobar, J. J. Evans, E. Falk, G. J. Feldman, T. H. Fields, R. Ford, M. V. Frohne, H. R. Gallagher, V. Garkusha, R. A. Gomes, M. C. Goodman, P. Gouffon, N. Graf, R. Gran, N. Grossman, K. Grzelak, A. Habig, S. R. Hahn, D. Harding, D. Harris, P. G. Harris, J. Hartnell, R. Hatcher, S. Hays, K. Heller, A. Holin, J. Huang, J. Hylen, A. Ibrahim, D. Indurthy, G. M. Irwin, Z. Isvan, D. E. Jaffe, C. James, D. Jensen, J. Johnstone, T. Kafka, S. M. S. Kasahara, G. Koizumi, S. Kopp, M. Kordosky, A. Kreymer, K. Lang, C. Laughton, G. Lefeuvre, J. Ling, P. J. Litchfield, L. Loiacono, P. Lucas, W. A. Mann, A. Marchionni, M. L. Marshak, N. Mayer, C. McGivern, M. M. Medeiros, R. Mehdiyev, J. R. Meier, M. D. Messier, D. G. Michael, R. H. Milburn, J. L. Miller, W. H. Miller, S. R. Mishra, S. Moed Sher, C. D. Moore, J. Morfin, L. Mualem, S. Mufson, S. Murgia, M. Murtagh, J. Musser, D. Naples, J. K. Nelson, H. B. Newman, R. J. Nichol, J. A. Nowak, J. O Connor, W. P. Oliver, M. Olsen, M. Orchanian, S. Osprey, R. B. Pahlka, J. Paley, A. Para, R. B. Patterson, T. Patzak, Z. Pavlovic, G. Pawloski, A. Perch, E. A. Peterson, D. A. Petyt, M. M. Pfutzner, S. Phan-Budd, R. K. Plunkett, N. Poonthottathil, P. Prieto, D. Pushka, X. Qiu, A. Radovic, R. A. Rameika, J. Ratchford, B. Rebel, R. Reilly, C. Rosenfeld, H. A. Rubin, K. Ruddick, M. C. Sanchez, N. Saoulidou, L. Sauer, J. Schneps, D. Schoo, A. Schreckenberger, P. Schreiner, P. Shanahan, R. Sharma, W. Smart, C. Smith, A. Sousa, A. Stefanik, N. Tagg, R. L. Talaga, G. Tassotto, J. Thomas, J. Thompson, M. A. Thomson, X. Tian, A. Timmons, D. Tinsley, S. C. Tognini, R. Toner, D. Torretta, I. Trostin, G. Tzanakos, J. Urheim, P. Vahle, K. Vaziri, E. Villegas, B. Viren, G. Vogel, R. C. Webber, A. Weber, R. C. Webb, A. Wehmann, C. White, L. Whitehead, L. H. Whitehead, S. G. Wojcicki, M. L. Wong-Squires, T. Yang, F. X. Yumiceva, V. Zarucheisky, R. Zwaska

This paper describes the hardware and operations of the Neutrinos at the Main Injector (NuMI) beam at Fermilab. It elaborates on the design considerations for the beam as a whole and for individual elements. The most important design details of individual components are described. Read More