William Paul

William Paul
Are you William Paul?

Claim your profile, edit publications, add additional information:

Contact Details

Name
William Paul
Affiliation
Location

Pubs By Year

Pub Categories

 
Physics - Mesoscopic Systems and Quantum Hall Effect (5)
 
Physics - Materials Science (3)
 
Computer Science - Learning (1)
 
Computer Science - Artificial Intelligence (1)
 
Computer Science - Distributed; Parallel; and Cluster Computing (1)

Publications Authored By William Paul

Machine learning applications are increasingly deployed not only to serve predictions using static models, but also as tightly-integrated components of feedback loops involving dynamic, real-time decision making. These applications pose a new set of requirements, none of which are difficult to achieve in isolation, but the combination of which creates a challenge for existing distributed execution frameworks: computation with millisecond latency at high throughput, adaptive construction of arbitrary task graphs, and execution of heterogeneous kernels over diverse sets of resources. We assert that a new distributed execution framework is needed for such ML applications and propose a candidate approach with a proof-of-concept architecture that achieves a 63x performance improvement over a state-of-the-art execution framework for a representative application. Read More

The highest-density magnetic storage media will code data in single-atom bits. To date, the smallest individually addressable bistable magnetic bits on surfaces consist of 5-12 atoms. Long magnetic relaxation times were demonstrated in molecular magnets containing one lanthanide atom, and recently in ensembles of single holmium (Ho) atoms supported on magnesium oxide (MgO). Read More

We report on transient adhesion and conductance phenomena associated with tip wetting in mechanical contacts produced by the indentation of a clean W(111) tip into a Au(111) surface. A combination of atomic force microscopy and scanning tunneling microscopy was used to carry out indentation and to image residual impressions in ultra-high vacuum. The ~7 nm radii tips used in these experiments were prepared and characterized by field ion microscopy in the same instrument. Read More

Atoms transferred to W(111) and W(110) tip apices from the Au(111) surface during tunneling and approach to mechanical contact experiments in STM are characterized in FIM at room temperature and at 158 K. The different activation energies for diffusion on the (111) and (110) tip planes and the experiment temperature are shown to be important factors controlling the extent of changes to the atomic structure of the tip. W(111) tips are much better suited to scanning probe studies which require the characterization of an atomically defined tip and subsequent verification of its integrity in FIM. Read More

The Field Ion Microscope (FIM) can be used to characterize the atomic configuration of the apex of sharp tips. These tips are well suited for Scanning Probe Microscopy (SPM) since they predetermine SPM resolution and electronic structure for spectroscopy. A protocol is proposed to preserve the atomic structure of the tip apex from etching due to gas impurities during the transfer period from FIM to SPM, and estimations are made regarding the time limitations of such an experiment due to contamination by ultra-high vacuum (UHV) rest gases. Read More