Wei Wang - Academia Sinica Institute of Astronomy and Astrophysics, Taiwan

Wei Wang
Are you Wei Wang?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Wei Wang
Affiliation
Academia Sinica Institute of Astronomy and Astrophysics, Taiwan
Location

Pubs By Year

Pub Categories

 
Computer Science - Computer Vision and Pattern Recognition (6)
 
Astrophysics of Galaxies (6)
 
High Energy Physics - Phenomenology (5)
 
Physics - Strongly Correlated Electrons (4)
 
Quantum Physics (4)
 
High Energy Physics - Experiment (4)
 
Physics - Physics and Society (4)
 
Computer Science - Computation and Language (3)
 
Physics - Superconductivity (3)
 
Physics - Mesoscopic Systems and Quantum Hall Effect (3)
 
Computer Science - Learning (3)
 
Mathematics - Quantum Algebra (2)
 
Physics - Chemical Physics (2)
 
Physics - Materials Science (2)
 
Mathematics - Mathematical Physics (1)
 
Mathematics - Rings and Algebras (1)
 
Computer Science - Databases (1)
 
Computer Science - Artificial Intelligence (1)
 
Mathematics - Analysis of PDEs (1)
 
Mathematics - Complex Variables (1)
 
Computer Science - Multimedia (1)
 
Computer Science - Information Retrieval (1)
 
Mathematics - Combinatorics (1)
 
Mathematics - Optimization and Control (1)
 
Cosmology and Nongalactic Astrophysics (1)
 
High Energy Astrophysical Phenomena (1)
 
Computer Science - Cryptography and Security (1)
 
Computer Science - Distributed; Parallel; and Cluster Computing (1)
 
Computer Science - Robotics (1)
 
Computer Science - Information Theory (1)
 
Mathematics - Information Theory (1)
 
Mathematics - Differential Geometry (1)
 
Nuclear Experiment (1)
 
Physics - Instrumentation and Detectors (1)
 
Mathematical Physics (1)

Publications Authored By Wei Wang

The existence of doubly heavy baryons have not been well established in experiments so far. Searching for them is one of the important purposes at the Large Hadron Collider (LHC) where plenty of heavy quarks have been generated. In this Letter we study the weak decays of doubly charmed baryons, $\Xi_{cc}^{++}$ and $\Xi_{cc}^{+}$, using the light-front quark model to calculate the transition form factors and firstly considering the rescattering mechanism for the long-distance contributions to predict the corresponding branching fractions. Read More

Robot vision is a fundamental device for human-robot interaction and robot complex tasks. In this paper, we use Kinect and propose a feature graph fusion (FGF) for robot recognition. Our feature fusion utilizes RGB and depth information to construct fused feature from Kinect. Read More

Memory caches are being aggressively used in today's data-parallel systems such as Spark, Tez, and Piccolo. However, prevalent systems employ rather simple cache management policies--notably the Least Recently Used (LRU) policy--that are oblivious to the application semantics of data dependency, expressed as a directed acyclic graph (DAG). Without this knowledge, memory caching can at best be performed by "guessing" the future data access patterns based on historical information (e. Read More

Promoting information spreading is a booming research topic in network science community. However, the exiting studies about promoting information spreading seldom took into account the human memory, which plays an important role in the spreading dynamics. In this paper we propose a non-Markovian information spreading model on complex networks, in which every informed node contacts a neighbor by using the memory of neighbor's accumulated contact numbers in the past. Read More

We have investigated the gate-voltage dependence and the temperature dependence of the magnetoconductivity of amorphous indium-gallium-zinc-oxide thin-film transistors. A weak-localization feature is observed at small magnetic fields on top of an overall negative magnetoconductivity at higher fields. An intriguing controllable competition between weak localization and weak antilocalization is observed by tuning the gate voltage or varying the temperature. Read More

Two-dimensional (2D) materials are composed of atomically thin crystals with an enormous surface-to-volume ratio, and their physical properties can be easily subjected to the change of the chemical environment. Encapsulation with other layered materials, such as hexagonal boron nitride, is a common practice; however, this approach often requires inextricable fabrication processes. Alternatively, it is intriguing to explore methods to control transport properties in the circumstance of no encapsulated layer. Read More

Quantum digital signatures (QDS) provide a means for signing electronic communications with informationtheoretic security. However, all previous demonstrations of quantum digital signatures assume trusted measurement devices. This renders them vulnerable against detector side-channel attacks, just like quantum key distribution. Read More

A layer-pressure topological phase diagram is obtained for few-layer phosphorene under increasing hydrostatic pressures by first-principles electronic structure calculations. We show that pressure can effectively manipulates the band structures of few-layer phosphorene -- a pressure of less than 4.2 GPa can drive the quasi-two-dimensional (2D) phosphorene (of 4 layers or thicker) from normal insulators to nontrivial topological Dirac semimetals (TDSMs). Read More

Argument component detection (ACD) is an important sub-task in argumentation mining. ACD aims at detecting and classifying different argument components in natural language texts. Historical annotations (HAs) are important features the human annotators consider when they manually perform the ACD task. Read More

Kitaev interactions underlying a quantum spin liquid have been long sought, but experimental data from which their strengths can be determined directly is still lacking. Here, by carrying out inelastic neutron scattering measurements on high-quality single crystals of $\alpha$-RuCl$_3$, we observe spin-wave spectra with a gap of $\sim$2 meV around the M point of the two-dimensional Brillouin zone. We derive an effective-spin model in the strong-coupling limit based on energy bands obtained from first-principle calculations, and find that the anisotropic Kitaev interaction $K$ term and the isotropic antiferromagentic off-diagonal exchange interaction $\Gamma$ term are significantly larger than the Heisenberg exchange coupling $J$ term. Read More

In this first paper in the SUPER GOODS series on powerfully star-forming galaxies in the two GOODS fields, we present a deep SCUBA-2 survey of the GOODS-N at both 850 and 450 micron (central rms noise of 0.28 mJy and 2.6 mJy, respectively). Read More

We use ultradeep 20 cm data from the Karl G. Jansky Very Large Array and 850 micron data from SCUBA-2 and the Submillimeter Array of an 124 arcmin^2 region of the Chandra Deep Field-north to analyze the high radio power (P_20cm>10^31 erg s^-1 Hz^-1) population. We find that 20 (42+/-9%) of the spectroscopically identified z>0. Read More

We report the discovery of a mysterious giant $H_{\alpha}$ blob that is $\sim 8$ kpc away from the main MaNGA target 1-24145, one component of a dry galaxy merger, identified in the first-year SDSS-IV MaNGA data. The size of the $H_{\alpha}$ blob is $\sim$ 3-4 kpc in radius, and the $H_{\alpha}$ distribution is centrally concentrated. However, there is no optical continuum counterpart in deep broadband images reaching $\sim$26. Read More

We present a theoretical analysis of the $D^-\to \pi^+\pi^- \ell\bar\nu$ and $\bar D^0\to \pi^+\pi^0 \ell\bar\nu$ decays. We construct a general angular distribution which can include arbitrary partial waves of $\pi\pi$. Retaining the S-wave and P-wave contributions we study the branching ratios, forward-backward asymmetries and a few other observables. Read More

Let $H$ be a Hopf quasigroup with bijective antipode and let $Aut_{HQG}(H)$ be the set of all Hopf quasigroup automorphisms of $H$. We introduce a category ${_{H}\mathcal{YDQ}^{H}}(\alpha,\beta)$ with $\alpha,\beta\in Aut_{HQG}(H)$ and construct a braided $T$-category $\mathcal{YDQ}(H)$ having all the categories ${_{H}\mathcal{YDQ}^{H}}(\alpha,\beta)$ as components. Read More

Designing an efficient routing strategy is of great importance to alleviate traffic congestion in multilayer networks. In this work, we design an effective routing strategy for multilayer networks by comprehensively considering the roles of nodes' local structures in micro-level, as well as the macro-level differences in transmission speeds between different layers. Both numerical and analytical results indicate that our proposed routing strategy can reasonably redistribute the traffic load of the low speed layer to the high speed layer, and thus the traffic capacity of multilayer networks are significantly enhanced compared with the monolayer low speed networks. Read More

The lack of stability is one of the major limitations that constrains PUF from being put in widespread practical use. In this paper, we propose a weak PUF and a strong PUF that are both completely stable with 0% intra-distance. These PUFs are called Locally Enhanced Defectivity (LED)PUF. Read More

Quantum coherence is a key resource in quantum information processing scenarios, and quantifying coherence is an important task for both quantum foundation and quantum technology. However, until now, all most of coherence measures are basis-dependent that does not accord with physical reality, since the physical properties of the physical system should not be changed with the different choice of coordinate systems. Here, we propose an \textit{intrinsic basis-independent quantum coherence measure} which satisfies all conditions for quantifying coherence. Read More

Doubly-heavy baryons, with two heavy and one light quarks, are expected to exist in QCD and their masses have been predicted in the quark model. However their existence is not well established so far in experiment. In this work, we explore the possibility of searching for $\Xi_{bc}$ and $\Xi_{cc}^{+}$ in the $W$-exchange processes, $\Xi_{bc}^{0}\to pK^{-}$ and $\Xi_{cc}^{+}\to \Sigma_{c}^{++}(2520)K^{-}$. Read More

The Be X-ray pulsar, SMC X-3 underwent a giant outburst in 2016, which was monitored with the Swift satellite. During the outburst, the fluxes in the broadband increased dramatically, and the 0.6--10 keV unabsorbed luminosity reached an extreme value of $\sim 10^{39}$ erg/s around August 24. Read More

Recent several experiments revealed that novel bipartite magnetic/superconducting phases widely exist in iron pnictides and chalcogenides. Nevertheless, the origin of the two-dome superconducting phases in iron-based compounds still remains unclear. Here we theoretically investigated the electronic structures, magnetic and superconducting properties of three representative iron-based systems, i. Read More

We study the spin-wave excitations in $\alpha$-RuCl$_3$ by the spin-wave theory. Starting from the five-orbital Hubbard model and the perturbation theory, we derive an effective isospin-$1/2$ model in the large Hubbard ($U$) limit. Based on the energy-band structure calculated from the first-principle method, we find that the effective model can be further reduced to the $K-\Gamma$ model containing a ferromagnetic nearest-neighbor (NN) Kitaev interaction ($K$) and a NN off-diagonal exchange interaction ($\Gamma$). Read More

In this work, we investigate the emergence of the toric-code and the double-semion topological order in a generic class of strongly correlated hardcore lattice boson models at the strong-interacting limit. In these models, the correlation is governed by two-site density-density interaction. We study conditions on the correlation and filling factor, which give rise to topological degeneracy; and show that specified dynamics in these models determines the toric-code and the double-semion topological order respectively. Read More

We have constructed a non-Hermitian two-level system (a PT -symmetric system) in dissipative environments, and investigated the quantum coherence in the non-Hermitian two-level system. Our results show that, quantum coherence can be created by PT -symmetric systems, even if the initial state of the twolevel system is incoherent state. Even though two-level system is interacted with dissipative environments, the quantum coherence exhibits a long-lived revival, and can be protected. Read More

Models of epidemic spreading on complex networks have attracted great attention among researchers in physics, mathematics, and epidemiology due to their success in predicting and controlling scenarios of epidemic spreading in real-world scenarios. To understand the interplay between epidemic spreading and the topology of a contact network, several outstanding theoretical approaches have been developed. An accurate theoretical approach describing the spreading dynamics must take both the network topology and dynamical correlations into consideration at the expense of increasing the complexity of the equations. Read More

We present measurements of the clustering properties of a sample of infrared (IR) bright dust-obscured galaxies (DOGs). Combining 125 deg$^2$ of wide and deep optical images obtained with the Hyper Suprime-Cam on the Subaru Telescope and all-sky mid-IR (MIR) images taken with Wide-Field Infrared Survey Explorer, we have discovered 4,367 IR-bright DOGs with $(i - [22])_{\rm AB}$ $>$ 7.0 and flux density at 22 $\mu$m $>$ 1. Read More

Effective image and sentence matching depends on how to well measure their global visual-semantic similarity. Based on the observation that such a global similarity arises from a complex aggregation of multiple local similarities between pairwise instances of image (objects) and sentence (words), we propose a selective multimodal Long Short-Term Memory network (sm-LSTM) for instance-aware image and sentence matching. The sm-LSTM includes a multimodal context-modulated attention scheme at each timestep that can selectively attend to a pair of instances of image and sentence, by predicting pairwise instance-aware saliency maps for image and sentence. Read More

Video captioning which automatically translates video clips into natural language sentences is a very important task in computer vision. By virtue of recent deep learning technologies, e.g. Read More

Previous work has shown that feature maps of deep convolutional neural networks (CNNs) can be interpreted as feature representation of a particular image region. Features aggregated from these feature maps have been exploited for image retrieval tasks and achieved state-of-the-art performances in recent years. The key to the success of such methods is the feature representation. Read More

The construction of polar codes for channels other than BECs requires sorting of all bit channels and then selecting the best $K$ of them for a block length $N=2^n$. The sorting algorithms, be it density evolution or Tal-Vardy's algorithm, typically require intense computations. In this paper, two types of partial orders (PO) of polar codes are incorporated in the construction process to decrease the required computations. Read More

Searching for the Neutrinoless Double Beta Decay (NLDBD) is now regarded as the topmost promising technique to explore the nature of neutrinos after the discovery of neutrino masses in oscillation experiments. PandaX-III (Particle And Astrophysical Xenon Experiment III) will search for the NLDBD of $^{136}$Xe at the China Jin Ping underground Laboratory (CJPL). In the first phase of the experiment, a high pressure gas Time Projection Chamber (TPC) will contain 200 kg, 90% $^{136}$Xe enriched gas operated at 10 bar. Read More

Task engagement is defined as loadings on energetic arousal (affect), task motivation, and concentration (cognition). It is usually challenging and expensive to label cognitive state data, and traditional computational models trained with limited label information for engagement assessment do not perform well because of overfitting. In this paper, we proposed two deep models (i. Read More

Penrose's two-spinor notation for $4$-dimensional Lorentzian manifolds can be extended to two-component notation for quaternionic manifolds, which is a very useful tool for calculation. We construct a family of quaternionic complexes over unimodular quaternionic manifolds by elementary calculation. On complex quaternionic manifolds, which are essentially the complexification of real analytic quaternionic K\"ahler manifolds, the existence of these complexes was established by Baston by using twistor transformations and spectral sequences. Read More

Approximate Nearest neighbor search (ANNS) is fundamental and essential operation in applications from many domains, such as databases, machine learning, multimedia, and computer vision. Although many algorithms have been continuously proposed in the literature in the above domains each year, there is no comprehensive evaluation and analysis of their performances. In this paper, we conduct a comprehensive experimental evaluation of many state-of-the-art methods for approximate nearest neighbor search. Read More

The mineral sphalerite (ZnS) is a typical constituent at the periphery of submarine hydrothermal deposits on Earth. It has been frequently suggested to have played an important role in the prebiotic chemistry due to its prominent photocatalytic activity. Nevertheless, the need for {\lambda} < 344 nm UV radiation, which accounts for a very minor part of the energy range of the incoming solar spectrum, limits the application of this semiconductor. Read More

Let $(C,A,\varphi)$ be an entwining structure over $k$. In this paper, we introduce the notions of the pivotal entwined datums and ribbon entwined datums to generalize (co)pivotal Hopf algebras and (co)ribbon Hopf algebras. These notions give necessary and sufficient conditions for the category of entwined modules to be a pivotal category and ribbon category. Read More

Neural Machine Translation (NMT) is an end-to-end learning approach for automated translation, with the potential to overcome many of the weaknesses of conventional phrase-based translation systems. Unfortunately, NMT systems are known to be computationally expensive both in training and in translation inference. Also, most NMT systems have difficulty with rare words. Read More

Incompatibility of image descriptor and ranking is always neglected in image retrieval. In this paper, manifold learning and Gestalt psychology theory are involved to solve the incompatibility problem. A new holistic descriptor called Perceptual Uniform Descriptor (PUD) based on Gestalt psychology is proposed, which combines color and gradient direction to imitate the human visual uniformity. Read More

The staggering amount of streaming time series coming from the real world calls for more efficient and effective online modeling solution. For time series modeling, most existing works make some unrealistic assumptions such as the input data is of fixed length or well aligned, which requires extra effort on segmentation or normalization of the raw streaming data. Although some literature claim their approaches to be invariant to data length and misalignment, they are too time-consuming to model a streaming time series in an online manner. Read More

In this paper, we present a fast and effective method for solving the Poisson-modified total variation model proposed in [9]. The existence and uniqueness of the model are again proved using different method. A semi-implicit difference scheme is designed to discretize the derived gradient descent flow with a large time step and can guarantee the restored image to be strictly positive in the image domain. Read More

We construct time quasi-periodic solutions to the nonlinear wave equations on the torus in arbitrary dimensions. This generalizes the method developed in the limit-elliptic setting in [W1] to the hyperbolic setting. The additional ingredient is a Diophantine property of algebraic numbers. Read More

We study the possible superconducting pairing symmetry mediated by spin and charge fluctuations on the honeycomb lattice using the extended Hubbard model and the random-phase-approximation method. From $2\%$ to $20\%$ doping levels, a spin-singlet $d_{x^{2}-y^{2}}+id_{xy}$-wave is shown to be the leading superconducting pairing symmetry when only the on-site Coulomb interaction $U$ is considered, with the gap function being a mixture of the nearest-neighbor and next-nearest-neighbor pairings. When the offset of the energy level between the two sublattices exceeds a critical value, the most favorable pairing is a spin-triplet $f$-wave which is mainly composed of the next-nearest-neighbor pairing. Read More

Using transient fluorescent spectra at time-zero, we develop a density-resolved fluorescent spectroscopic method for investigating photoproducts in CH3NH3PbI3 perovskite and related photophysics. The density dependent dynamical co-existence of excitons and free carriers over a wide density range is experimentally observed for the first time. The exciton binding energy (EB) and the effective mass of electron-hole pair can be estimated based on such co-existence. Read More

Let $S_n(\mathbb{Z})$ and $O_n(\mathbb{Q})$ denote the set of all $n\times n$ symmetric matrices over the ring of integers $\mathbb{Z}$ and the set of all $n\times n$ orthogonal matrices over the field of rational numbers $\mathbb{Q}$, respectively. The paper is mainly concerned with the following problem: Given a matrix $A\in {S_n(\mathbb{Z})}$. How can one find all rational orthogonal matrices $Q\in{O_n(\mathbb{Q})}$ such that $Q^TAQ\in {S_n(\mathbb{Z})}$, and in particular, when does $Q^TAQ\in {S_n(\mathbb{Z})}$ with $Q\in{O_n(\mathbb{Q})}$ imply that $Q$ is \emph{a signed permutation matrix} (i. Read More

In recent years, cross-modal retrieval has drawn much attention due to the rapid growth of multimodal data. It takes one type of data as the query to retrieve relevant data of another type. For example, a user can use a text to retrieve relevant pictures or videos. Read More

At high energies, the cross section of a hard exclusive process at finite scattering angle falls off as a negative power of the center-of-mass energy $\sqrt{s}$. If all involved quark-gluon compositions undergo hard momentum transfers, the scaling of the fall-off is determined by the underlying valence structures of the initial and final states, known as the constituent counting rules. It was argued in the literature that the counting rules are a powerful tool to determine the valence degrees of freedom inside multiquark states when applied to exclusive production processes. Read More

We suggest to study the $B_{s}$ and its excitations $B_{sJ}$ in the $B_c$ decays. We calculate the $B_c\to B_{sJ}$ and $B_c\to B_{J}$ form factors within the covariant light-front quark model, where the $B_{sJ}$ and $B_{J}$ denote an s-wave or p-wave $\bar bs$ and $\bar bd$ meson, respectively. The form factors at $q^2=0$ are directly computed while their $q^2$-distributions are obtained by the extrapolation. Read More

Using network-based information to facilitate information spreading is an essential task for spreading dynamics in complex networks, which will benefit the promotion of technical innovations, healthy behaviors, new products, etc. Focusing on degree correlated networks, we propose a preferential contact strategy based on the local network structure and local informed density to promote the information spreading. During the spreading process, an informed node will preferentially select a contact target among its neighbors, basing on their degrees or local informed densities. Read More