W. Xiong

W. Xiong
Are you W. Xiong?

Claim your profile, edit publications, add additional information:

Contact Details

Name
W. Xiong
Affiliation
Location

Pubs By Year

Pub Categories

 
Quantum Physics (11)
 
Physics - Mesoscopic Systems and Quantum Hall Effect (7)
 
Physics - Optics (6)
 
Physics - Materials Science (3)
 
Physics - Atomic and Molecular Clusters (3)
 
Mathematics - Information Theory (2)
 
Physics - Atomic Physics (2)
 
Nuclear Experiment (2)
 
Computer Science - Information Theory (2)
 
Physics - Chemical Physics (2)
 
Computer Science - Computation and Language (2)
 
Nuclear Theory (1)
 
Physics - Fluid Dynamics (1)
 
Computer Science - Cryptography and Security (1)
 
Physics - Statistical Mechanics (1)
 
High Energy Physics - Phenomenology (1)
 
Physics - Other (1)
 
Physics - Instrumentation and Detectors (1)
 
Mathematics - Mathematical Physics (1)
 
Mathematics - Probability (1)
 
Mathematical Physics (1)
 
Computer Science - Networking and Internet Architecture (1)
 
High Energy Physics - Experiment (1)
 
Computer Science - Databases (1)
 
Physics - Disordered Systems and Neural Networks (1)
 
Physics - Medical Physics (1)
 
Physics - Plasma Physics (1)
 
Mathematics - Representation Theory (1)
 
Mathematics - Number Theory (1)
 
Computer Science - Computer Vision and Pattern Recognition (1)
 
Physics - Computational Physics (1)

Publications Authored By W. Xiong

We introduce a new type of states for light in multimode waveguides featuring strongly enhanced or reduced spectral correlations. Based on the experimentally measured multi-spectral transmission matrix of a multimode fiber, we generate a set of states that outperform the established "principal modes" in terms of the spectral stability of their output spatial field profiles. Inverting this concept also allows us to create states with a minimal spectral correlation width, whose output profiles are considerably more sensitive to a frequency change than typical input wavefronts. Read More

In this article, we designed and synthesized a novel small molecule acceptor of ITCPTC with thiophene-fused ending group by employing a new active methylene precursor of CPTCN. The ITCPTC based polymer solar cells with PBT1-EH as donor achieved very high PCEs of up to 11.8% with a remarkably enhanced fill factor (FF) of 0. Read More

In this paper, we propose a concurrency control protocol, called the Prudent-Precedence Concurrency Control (PPCC) protocol, for high data contention database environments. PPCC is prudently more aggressive in permitting more serializable schedules than two-phase locking. It maintains a restricted precedence among conflicting transactions and commits the transactions according to the serialization order established in the executions. Read More

Conversational speech recognition has served as a flagship speech recognition task since the release of the Switchboard corpus in the 1990s. In this paper, we measure the human error rate on the widely used NIST 2000 test set, and find that our latest automated system has reached human parity. The error rate of professional transcribers is 5. Read More

We experimentally demonstrate magnon Kerr effect in a cavity-magnon system, where magnons in a small yttrium iron garnet (YIG) sphere are strongly but dispersively coupled to the photons in a three-dimensional cavity. When the YIG sphere is pumped to generate considerable magnons, the Kerr effect yields a perceptible shift of the cavity's central frequency and more appreciable shifts of the magnon modes. We derive an analytical relation between the magnon frequency shift and the drive power for the uniformly magnetized YIG sphere and find that it agrees very well with the experimental results of the Kittel mode. Read More

We describe Microsoft's conversational speech recognition system, in which we combine recent developments in neural-network-based acoustic and language modeling to advance the state of the art on the Switchboard recognition task. Inspired by machine learning ensemble techniques, the system uses a range of convolutional and recurrent neural networks. I-vector modeling and lattice-free MMI training provide significant gains for all acoustic model architectures. Read More

We present experimental and numerical studies on principal modes in a multimode fiber with mode coupling. By applying external stress to the fiber and gradually adjusting the stress, we have realized a transition from weak to strong mode coupling, which corresponds to the transition from single scattering to multiple scattering in mode space. Our experiments show that principal modes have distinct spatial and spectral characteristic in the weak and strong mode coupling regimes. Read More

We propose to measure the photo-production cross section of $J/{\psi}$ near threshold, in search of the recently observed LHCb hidden-charm resonances $P_c$(4380) and $P_c$(4450) consistent with 'pentaquarks'. The observation of these resonances in photo-production will provide strong evidence of the true resonance nature of the LHCb states, distinguishing them from kinematic enhancements. A bremsstrahlung photon beam produced with an 11 GeV electron beam at CEBAF covers the energy range of $J/{\psi}$ production from the threshold photo-production energy of 8. Read More

Electromagnetically induced transparency (EIT) has been realized in atomic systems, but fulfilling the EIT conditions for artificial atoms made from superconducting circuits is a more difficult task. Here we report an experimental observation of the EIT in a tunable three-dimensional transmon by probing the cavity transmission. To fulfill the EIT conditions, we tune the transmon to adjust its damping rates by utilizing the effect of the cavity on the transmon states. Read More

We introduce a novel method to determine the orientation heterogeneity (mean tilt angle and orientational distribution) of molecules at interfaces using heterodyne two-dimensional sum frequency generation spectroscopy. By doing so, we not only have solved the long-standing "magic angle" challenge, i.e. Read More

We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Read More

We experimentally generate and characterize the eigenstates of the Wigner-Smith time-delay matrix, called principal modes, in a multimode fiber with strong mode coupling. The unique spectral and temporal properties of principal modes enable a global control of the temporal dynamics of optical pulses transmitted through the fiber, despite random mode mixing. Our analysis reveals that the well-defined delay time of the eigenstates are formed by multi-path interference, which can be effectively manipulated by the spatial degrees of freedom of the input wavefront. Read More

We study cross-Kerr (CK) effect on an optomechanical system driven by two-tone fields. We show that in the presence of the CK effect, a bistable behavior of the mean photon number in the cavity becomes more robust against the fluctuations of the frequency detuning between the cavity mode and the control field. The bistability can also be turned into a tri-stability within the experimentally accessible range of the system parameters. Read More

We study a tripartite quantum system consisting of a coplanar-waveguide (CPW) resonator and a nanomechanical resonator (NAMR) connected by a flux qubit, where the flux qubit has a large detuning from both resonators. By a unitray transformation and a second-order approximation, we obtain a strong and controllable (i.e. Read More

We report new measurements of the doubly-polarized photodisintegration of $^3$He at an incident photon energy of 16.5 MeV, carried out at the High Intensity $\gamma$-ray Source (HI$\gamma$S) facility located at Triangle Universities Nuclear Laboratory (TUNL). The spin-dependent double-differential cross sections and the contribution from the three--body channel to the Gerasimov-Drell-Hearn (GDH) integrand were extracted and compared with the state-of-the-art three--body calculations. Read More

We demonstrate topological defect lasers in a GaAs membrane with embedded InAs quantum dots. By introducing a disclination to a square-lattice of elliptical air holes, we obtain spatially confined optical resonances with high quality factor. Such resonances support powerflow vortices, and lase upon optical excitation of quantum dots, embedded in the structure. Read More

We introduce topological defect to a square lattice of elliptical cylinders. Despite the broken translational symmetry, the long-range positional order of the cylinders leads to residual photonic bandgap in the density of optical states. However, the band-edge modes are strongly modified by the spatial variation of ellipse orientation. Read More

Rotational setup errors are usually neglected in most clinical centers. An analytical formula is developed to determine the extra margin between clinical target volume (CTV) and planning target volume (PTV) to account for setup errors. The proposed formula corrects for both translational and rotational setup errors and then incorporated into margin determination for PTV. Read More

To support interference-free quasi-synchronous code-division multiple-access (QS-CDMA) communication with low spectral density profile in a cognitive radio (CR) network, it is desirable to design a set of CDMA spreading sequences with zero-correlation zone (ZCZ) property. However, traditional ZCZ sequences (which assume the availability of the entire spectral band) cannot be used because their orthogonality will be destroyed by the spectrum hole constraint in a CR channel. To date, analytical construction of ZCZ CR sequences remains open. Read More

The metal-insulator transition (MIT) is one of the remarkable electrical transport properties of atomically thin molybdenum disulphide (MoS2). Although the theory of electron-electron interactions has been used in modeling the MIT phenomena in MoS2, the underlying mechanism and detailed MIT process still remain largely unexplored. Here, we demonstrate that the vertical metal-insulator-semiconductor (MIS) heterostructures built from atomically thin MoS2 (monolayers and multilayers) are ideal capacitor structures for probing the electron states in MoS2. Read More

We propose a scheme for generating the Schr\"{o}dinger cat state based on geometric operations by a nanomechanical resonator coupled to a superconducting charge qubit. The charge qubit, driven by two strong classical fields, interacts with a high-frequency phonon mode of the nanomechanical resonator. During the operation, the charge qubit undergoes no real transitions, while the phonon mode of the nanomechanical resonator is displaced along different paths in the phase space, dependent on the states of the charge qubit, which yields the Schr\"{o}dinger cat state. Read More

We propose practical schemes for concentrating entanglement of a pair of unknown partially entangled Bell states and three-photon W states with cross-Kerr nonlinearity. In the schemes, utilizing local operations and classical communication, two separated parties can obtain one maximally entangled photon pair from two previously shared partially entangled photon pairs, and three separated parties can obtain one maximally entangled three-photon W state and a maximally entangled cluster state from two identical partially entangled three-photon W state with a certain success probability. Finally, we discuss the influences of sources of errors and decoherence on the schemes. Read More

We demonstrate the highest flux tabletop source of coherent soft X-rays to date, driven by a single-stage 10 mJ Ti:sapphire regenerative amplifier at 1 kHz. We first down-convert the laser to 1.3 um using a parametric amplifier, before up-converting it to soft X-rays using high harmonic generation in a high-pressure, phase matched, hollow waveguide geometry. Read More

We study a hybrid quantum system consisting of spin ensembles and superconducting flux qubits, where each spin ensemble is realized using the nitrogen-vacancy centers in a diamond crystal and the nearest-neighbor spin ensembles are effectively coupled via a flux qubit.We show that the coupling strengths between flux qubits and spin ensembles can reach the strong and even ultrastrong coupling regimes by either engineering the hybrid structure in advance or tuning the excitation frequencies of spin ensembles via external magnetic fields. When extending the hybrid structure to an array with equal coupling strengths, we find that in the strong-coupling regime, the hybrid array is reduced to a tight-binding model of a one-dimensional bosonic lattice. Read More

In a novel experiment that images the momentum distribution of individual, isolated 100-nm-scale plasmas, we make the first experimental observation of shock waves in nanoplasmas. We demonstrate that the introduction of a heating pulse prior to the main laser pulse increases the intensity of the shock wave, producing a strong burst of quasi-monochromatic ions with an energy spread of less than 15%. Numerical hydrodynamic calculations confirm the appearance of accelerating shock waves, and provide a mechanism for the generation and control of these shock waves. Read More

Device-to-device(D2D) underlaying communication brings great benefits to the cellular networks from the improvement of coverage and spectral efficiency at the expense of complicated transceiver design. With frequency spectrum sharing mode, the D2D user generates interference to the existing cellular networks either in downlink or uplink. Thus the resource allocation for D2D pairs should be designed properly in order to reduce possible interference, in particular for uplink. Read More

We propose and demonstrate a momentum filter for atomic gas based on a designed Talbot-Lau interferometer. It consists in two identical optical standing wave pulses separated by a delay equal to odd multiples of the half Talbot time. The one dimensional momentum width along the long direction of a cigar shape condensate is rapidly and greatly purified to a minimum, which corresponds to the ground state energy of the confining trap in our experiment. Read More

Reversible control of surface wettability has wide applications in lab-on-chip systems, tunable optical lenses, and microfluidic tools. Using a graphene sheet as a sample material and molecular dynamic (MD) simulations, we demonstrate that strain engineering can serve as an effective way to control the surface wettability. The contact angles $\theta$ of water droplets on a graphene vary from 72. Read More

We study experimentally the critical correlation in an ultra-cold Bose gas with a temporal Talbot-Lau (TL) interferometer. Near the critical temperature, we observe a bi-modal density distribution in an ultra-cold Bose gas after the application of the TL interferometer. The measured fraction of the narrower peak in the density distribution displays a clear peak within the critical regime. Read More

Computational color constancy is a very important topic in computer vision and has attracted many researchers' attention. Recently, lots of research has shown the effects of high level visual content information for illumination estimation. However, all of these existing methods are essentially combinational strategies in which image's content analysis is only used to guide the combination or selection from a variety of individual illumination estimation methods. Read More

For the first time, we have observed the obvious triple G peak splitting of ABA stacked trilayer graphene. The G peak splitting can be quantatively understood through the different electron-phonon coupling strength of Ea', Eb' and Ea" modes. In addition, the fluctuation of G peak position at different sample locations can also be understood from the view of the varied interaction strength among graphene layers of TLG, which is induced by nonuniform hole doping at the microscopic level. Read More

Reasonable evaluation of composition amplitude in spinodal decomposition is a challenge to microanalysis of atom probe tomography, especially at early stages when phase separation is not prominent. This impedes quantitative analysis of spinodal structure in atom probe tomography as well as comparison with simulated results from phase field simulations. We hereby report an effective method to estimate the composition amplitude by constructing an amplitude density spectrum. Read More

We find that collective flow model which can successfully analyze charged particle distributions at AGS and lower SPS (less than 20Gev/n). but fails to analyze that of at RHIC. The tails of distribution of charged particle at RHIC has a jump from the collective flow model calculation as the energy increases. Read More

The linear complexity (LC) of a sequence has been used as a convenient measure of the randomness of a sequence. Based on the theories of linear complexity, $k$-error linear complexity, the minimum error and the $k$-error linear complexity profile, the notion of $m$-tight error linear complexity is presented. An efficient algorithm for computing $m$-tight error linear complexity is derived from the algorithm for computing $k$-error linear complexity of sequences over GF($p^{m}$) with period $p^n$, where $p$ is a prime. Read More

Using equilibrium and non-equilibrium molecular dynamic (MD) simulations, we found that engineering the strain on the graphene planes forming a channel can drastically change the interfacial friction of water transport through it. There is a sixfold change of interfacial friction stress when the strain changes from -10% to 10%. Stretching the graphene walls increases the interfacial shear stress, while compressing the graphene walls reduces it. Read More

We analyze the effects of sequences of standing wave pulses on a Bose-Einstein condensate (BEC). Experimental observations are in good agreement with a numerical simulation based on the band structure theory in the optical lattice. We also demonstrate that a coherent control method based on such sequences of pulses is very efficient for experimentally designing specific momentum states. Read More

We present a scheme for non-adiabatically loading a Bose-Einstein condensate into the ground state of a one dimensional optical lattice within a few tens of microseconds typically, i.e. in less than half the Talbot period. Read More

Given an ensemble of NxN random matrices, a natural question to ask is whether or not the empirical spectral measures of typical matrices converge to a limiting spectral measure as N --> oo. While this has been proved for many thin patterned ensembles sitting inside all real symmetric matrices, frequently there is no nice closed form expression for the limiting measure. Further, current theorems provide few pictures of transitions between ensembles. Read More

Manipulation of the quantum state by the Majorana transition in spinor BEC system has been realized by altering the rotation frequency of the magnetic field's direction. This kind of manipulation method has no limitation on the transition speed in principle and the system is well closed, which provides a new and superior tool to manipulate quantum states. Using this methord on pulsed atom laser, multicomponent spinor atom laser is generated. Read More

In this paper, we offer a competing dynamic analysis of the one-dimensional Ising model built on the small-world network (SWN). Adding-type SWNs are investigated in detail using a simplified Hamiltonian of mean-field nature, and the result of rewiring-type is given because of the similarities of these two typical networks. We study the dynamical processes with competing Glauber mechanism and Kawasaki mechanism. Read More