W. Jaskierny

W. Jaskierny
Are you W. Jaskierny?

Claim your profile, edit publications, add additional information:

Contact Details

Name
W. Jaskierny
Affiliation
Location

Pubs By Year

Pub Categories

 
Physics - Instrumentation and Detectors (9)
 
High Energy Physics - Experiment (6)
 
Physics - Accelerator Physics (1)

Publications Authored By W. Jaskierny

2016Dec
Authors: MicroBooNE Collaboration, R. Acciarri, C. Adams, R. An, A. Aparicio, S. Aponte, J. Asaadi, M. Auger, N. Ayoub, L. Bagby, B. Baller, R. Barger, G. Barr, M. Bass, F. Bay, K. Biery, M. Bishai, A. Blake, V. Bocean, D. Boehnlein, V. D. Bogert, T. Bolton, L. Bugel, C. Callahan, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F. Cavanna, S. Chappa, H. Chen, K. Chen, C. Y. Chi, C. S. Chiu, E. Church, D. Cianci, G. H. Collin, J. M. Conrad, M. Convery, J. Cornele, P. Cowan, J. I. Crespo-Anadon, G. Crutcher, C. Darve, R. Davis, M. Del Tutto, D. Devitt, S. Duffin, S. Dytman, B. Eberly, A. Ereditato, D. Erickson, L. Escudero Sanchez, J. Esquivel, S. Farooq, J. Farrell, D. Featherston, B. T. Fleming, W. Foreman, A. P. Furmanski, V. Genty, M. Geynisman, D. Goeldi, B. Goff, S. Gollapinni, N. Graf, E. Gramellini, J. Green, A. Greene, H. Greenlee, T. Griffin, R. Grosso, R. Guenette, A. Hackenburg, R. Haenni, P. Hamilton, P. Healey, O. Hen, E. Henderson, J. Hewes, C. Hill, K. Hill, L. Himes, J. Ho, G. Horton-Smith, D. Huffman, C. M. Ignarra, C. James, E. James, J. Jan de Vries, W. Jaskierny, C. M. Jen, L. Jiang, B. Johnson, M. Johnson, R. A. Johnson, B. J. P. Jones, J. Joshi, H. Jostlein, D. Kaleko, L. N. Kalousis, G. Karagiorgi, T. Katori, P. Kellogg, W. Ketchum, J. Kilmer, B. King, B. Kirby, M. Kirby, E. Klein, T. Kobilarcik, I. Kreslo, R. Krull, R. Kubinski, G. Lange, F. Lanni, A. Lathrop, A. Laube, W. M. Lee, Y. Li, D. Lissauer, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, G. Lukhanin, M. Luethi, B. Lundberg, X. Luo, G. Mahler, I. Majoros, D. Makowiecki, A. Marchionni, C. Mariani, D. Markley, J. Marshall, D. A. Martinez Caicedo, K. T. McDonald, D. McKee, A. McLean, J. Mead, V. Meddage, T. Miceli, G. B. Mills, W. Miner, J. Moon, M. Mooney, C. D. Moore, Z. Moss, J. Mousseau, R. Murrells, D. Naples, P. Nienaber, B. Norris, N. Norton, J. Nowak, M. OBoyle, T. Olszanowski, O. Palamara, V. Paolone, V. Papavassiliou, S. F. Pate, Z. Pavlovic, R. Pelkey, M. Phipps, S. Pordes, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, V. Radeka, A. Rafique, R. A Rameika, B. Rebel, R. Rechenmacher, S. Rescia, L. Rochester, C. Rudolf von Rohr, A. Ruga, B. Russell, R. Sanders, W. R. Sands III, M. Sarychev, D. W. Schmitz, A. Schukraft, R. Scott, W. Seligman, M. H. Shaevitz, M. Shoun, J. Sinclair, W. Sippach, T. Smidt, A. Smith, E. L. Snider, M. Soderberg, M. Solano-Gonzalez, S. Soldner-Rembold, S. R. Soleti, J. Sondericker, P. Spentzouris, J. Spitz, J. St. John, T. Strauss, K. Sutton, A. M. Szelc, K. Taheri, N. Tagg, K. Tatum, J. Teng, K. Terao, M. Thomson, C. Thorn, J. Tillman, M. Toups, Y. T. Tsai, S. Tufanli, T. Usher, M. Utes, R. G. Van de Water, C. Vendetta, S. Vergani, E. Voirin, J. Voirin, B. Viren, P. Watkins, M. Weber, T. Wester, J. Weston, D. A. Wickremasinghe, S. Wolbers, T. Wongjirad, K. Woodruff, K. C. Wu, T. Yang, B. Yu, G. P. Zeller, J. Zennamo, C. Zhang, M. Zuckerbrot

This paper describes the design and construction of the MicroBooNE liquid argon time projection chamber and associated systems. MicroBooNE is the first phase of the Short Baseline Neutrino program, located at Fermilab, and will utilize the capabilities of liquid argon detectors to examine a rich assortment of physics topics. In this document details of design specifications, assembly procedures, and acceptance tests are reported. Read More

We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employed a cryostat cooled by liquid nitrogen combined with a xenon purification and chiller system. A modified {\it Bridgeman's technique} reproduces a large scale optically transparent solid xenon. Read More

A study of charge drift in a large scale optically transparent solid xenon is reported. A pulsed high power xenon light source is used to liberate electrons from a photocathode. The drift speeds of the electrons are measured using a 8. Read More

In this paper, we report on the design and operation of the LongBo time projection chamber in the Liquid Argon Purity Demonstrator cryostat. This chamber features a 2 m long drift distance. We measure the electron drift lifetime in the liquid argon using cosmic ray muons and the lifetime is at least 14 ms at 95\% confidence level. Read More

2015Jan
Authors: J. Grange, V. Guarino, P. Winter, K. Wood, H. Zhao, R. M. Carey, D. Gastler, E. Hazen, N. Kinnaird, J. P. Miller, J. Mott, B. L. Roberts, J. Benante, J. Crnkovic, W. M. Morse, H. Sayed, V. Tishchenko, V. P. Druzhinin, B. I. Khazin, I. A. Koop, I. Logashenko, Y. M. Shatunov, E. Solodov, M. Korostelev, D. Newton, A. Wolski, R. Bjorkquist, N. Eggert, A. Frankenthal, L. Gibbons, S. Kim, A. Mikhailichenko, Y. Orlov, D. Rubin, D. Sweigart, D. Allspach, G. Annala, E. Barzi, K. Bourland, G. Brown, B. C. K. Casey, S. Chappa, M. E. Convery, B. Drendel, H. Friedsam, T. Gadfort, K. Hardin, S. Hawke, S. Hayes, W. Jaskierny, C. Johnstone, J. Johnstone, V. Kashikhin, C. Kendziora, B. Kiburg, A. Klebaner, I. Kourbanis, J. Kyle, N. Larson, A. Leveling, A. L. Lyon, D. Markley, D. McArthur, K. W. Merritt, N. Mokhov, J. P. Morgan, H. Nguyen, J-F. Ostiguy, A. Para, C. C. Polly M. Popovic, E. Ramberg, M. Rominsky, D. Schoo, R. Schultz, D. Still, A. K. Soha, S. Strigonov, G. Tassotto, D. Turrioni, E. Villegas, E. Voirin, G. Velev, D. Wolff, C. Worel, J-Y. Wu, R. Zifko, K. Jungmann, C. J. G. Onderwater, P. T. Debevec, S. Ganguly, M. Kasten, S. Leo, K. Pitts, C. Schlesier, M. Gaisser, S. Haciomeroglu, Y-I. Kim, S. Lee, M-J Lee, Y. K. Semertzidis, K. Giovanetti, V. A. Baranov, V. N. Duginov, N. V. Khomutov, V. A. Krylov, N. A. Kuchinskiy, V. P. Volnykh, C. Crawford, R. Fatemi, W. P. Gohn, T. P. Gorringe, W. Korsch, B. Plaster, A. Anastasi, D. Babusci, S. Dabagov, C. Ferrari, A. Fioretti, C. Gabbanini, D. Hampai, A. Palladino, G. Venanzoni, T. Bowcock, J. Carroll, B. King, S. Maxfield, K. McCormick, A. Smith, T. Teubner, M. Whitley, M. Wormald, R. Chislett, S. Kilani, M. Lancaster, E. Motuk, T. Stuttard, M. Warren, D. Flay, D. Kawall, Z. Meadows, T. Chupp, R. Raymond, A. Tewlsey-Booth, M. J. Syphers, D. Tarazona, C. Ankenbrandt, M. A. Cummings, R. P. Johnson, C. Yoshikawa, S. Catalonotti, R. Di Stefano, M. Iacovacci, S. Mastroianni, S. Chattopadhyay, M. Eads, M. Fortner, D. Hedin, N. Pohlman, A. de Gouvea, H. Schellman, L. Welty-Rieger, T. Itahashi, Y. Kuno, K. Yai, F. Azfar, S. Henry, G. D. Alkhazov, V. L. Golovtsov, P. V. Neustroev, L. N. Uvarov, A. A. Vasilyev, A. A. Vorobyov, M. B. Zhalov, L. Cerrito, F. Gray, G. Di Sciascio, D. Moricciani, C. Fu, X. Ji, L. Li, H. Yang, D. Stöckinger, G. Cantatore, D. Cauz, M. Karuza, G. Pauletta, L. Santi, S. Baeßler, M. Bychkov, E. Frlez, D. Pocanic, L. P. Alonzi, M. Fertl, A. Fienberg, N. Froemming, A. Garcia, D. W. Hertzog J. Kaspar, P. Kammel, R. Osofsky, M. Smith, E. Swanson, T. van Wechel, K. Lynch

The Muon (g-2) Experiment, E989 at Fermilab, will measure the muon anomalous magnetic moment a factor-of-four more precisely than was done in E821 at the Brookhaven National Laboratory AGS. The E821 result appears to be greater than the Standard-Model prediction by more than three standard deviations. When combined with expected improvement in the Standard-Model hadronic contributions, E989 should be able to determine definitively whether or not the E821 result is evidence for physics beyond the Standard Model. Read More

We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employ a liquid nitrogen cooled cryostat combined with a xenon purification and chiller system to measure the scintillation light output and electron drift speed from both the solid and liquid phases of xenon. Scintillation light output from sealed radioactive sources is measured by a set of high quantum efficiency photomultiplier tubes suitable for cryogenic applications. Read More

The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Read More

2012Nov
Authors: The Mu2e Project, Collaboration, :, R. J. Abrams, D. Alezander, G. Ambrosio, N. Andreev, C. M. Ankenbrandt, D. M. Asner, D. Arnold, A. Artikov, E. Barnes, L. Bartoszek, R. H. Bernstein, K. Biery, V. Biliyar, R. Bonicalzi, R. Bossert, M. Bowden, J. Brandt, D. N. Brown, J. Budagov, M. Buehler, A. Burov, R. Carcagno, R. M. Carey, R. Carosi, M. Cascella, D. Cauz, F. Cervelli, A. Chandra, J. K. Chang, C. Cheng, P. Ciambrone, R. N. Coleman, M. Cooper, M. C. Corcoran, M. Cordelli, Y. Davydov, A. L. de Gouvea, L. De Lorenzis, P. T. Debevec, F. DeJongh, C. Densham, G. Deuerling, J. Dey, S. Di Falco, S. Dixon, R. Djilkibaev, B. Drendel, E. C. Dukes, A. Dychkant, B. Echenard, R. Ehrlich, N. Evans, D. Evbota, I. Fang, J. E. Fast, S. Feher, M. Fischler, M. Frank, E. Frlez, S. S. Fung, G. Gallo, G. Galucci, A. Gaponenko, K. Genser, S. Giovannella, V. Glagolev, D. Glenzinski, D. Gnani, S. Goadhouse, G. D. Gollin, C. Grace, F. Grancagnolo, C. Group, J. Hanson, S. Hanson, F. Happacher, E. Heckmaier, D. Hedin, D. W. Hertzog, R. Hirosky, D. G. Hitlin, E. Ho, X. Huang, E. Huedem, P. Q. Hung, E. V. Hungerford, T. Ito, W. Jaskierny, R. Jedziniak, R. P. Johnson, C. Johnstone, J. A. Johnstone, S. A. Kahn, P. Kammel, T. I. Kang, V. S. Kashikhin, V. V. Kashikhin, P. Kasper, D. M. Kawall, V. Khalatian, M. Kim, A. Klebaner, D. Kocen, Y. Kolomensky, I. Kourbanis, J. Kowalkowski, J. Kozminski, K. Krempetz, K. S. Kumar, R. K. Kutschke, R. Kwarciany, T. Lackowski, M. Lamm, M. Larwill, K. Lau, M. J. Lee, A. L'Erario, T. Leveling, G. Lim, C. Lindenmeyer, V. Logashenko, T. Lontadze, M. Lopes, A. Luca, K. R. Lynch, T. Ma, A. Maffezzoli, W. J. Marciano, M. Martini, W. Masayoshi, V. Matushko, M. McAteer, R. McCrady, A. Moccoli, L. Michelotti, J. P. Miller, S. Miscetti, W. Molzon, J. Morgan, A. Mukherjee, S. Nagaitsev, V. Nagaslaev, J. Niehoff, D. V. Neuffer, T. Nicol, A. J. Norman, B. Norris, J. Odell, S. Oh, Y. Oksuzian, G. Onorato, J. Orduna, D. Orris, R. Ostojic, T. Page, K. D. Paschke, G. Pauletta, T. Peterson, G. M. Piacentino, G. Pileggi, A. Pla-Dalmau, D. Pocanic, C. C. Polly, V. Polychronakos, B. Ponzio, M. Popovic, J. L. Popp, F. Porter, E. Presbys, P. Prieto, V. Pronskikh, F. Puccinelli, R. Rabehl, J. Ramsey, R. E. Ray, R. Rechenmacher, S. Rella, L. Ristori, R. Rivera, B. L. Roberts, T. J. Roberts, P. Rubinov, V. L. Rusu, A. Saputi, I. Sarra, Y. Smertzidis, P. Shanahan, A. Simonenko, J. Steward, I. Suslov, C. Sylvester, Z. Tang, M. Tartaglia, G. Tassielli, V. Tereshchenko, J. Theilacker, J. Tompkins, R. Tschirhart, G. Van Zandbergen, C. Vannini, G. Venanzoni, H. von der Lippe, R. Wagner, J. P. Walder, R. Walton, S. Wands, S. Wang, G. Warren, S. Werkema, H. B. White Jr, R. Wielgos, L. S. Wood, M. Woodward, J. Wu, M. Xiao, R. Yamada, P. Yamin, K. Yarritu, K. Yonehara, C. Yoshikawa, Z. You, G. Yu, A. Yurkewicz, G. Zavarise, R. Y. Zhu

Mu2e at Fermilab will search for charged lepton flavor violation via the coherent conversion process mu- N --> e- N with a sensitivity approximately four orders of magnitude better than the current world's best limits for this process. The experiment's sensitivity offers discovery potential over a wide array of new physics models and probes mass scales well beyond the reach of the LHC. We describe herein the conceptual design of the proposed Mu2e experiment. Read More

A filter system for removing electronegative impurities from liquid argon is described. The active components of the filter are adsorbing molecular sieve and activated-copper-coated alumina granules. The system is capable of purifying liquid argon to an oxygen-equivalent impurity concentration of better than 30 parts per trillion, corresponding to an electron drift lifetime of at least 10 ms. Read More