W. Hajdas - PSI, Switzerland;

W. Hajdas
Are you W. Hajdas?

Claim your profile, edit publications, add additional information:

Contact Details

Name
W. Hajdas
Affiliation
PSI, Switzerland;
City
Villigen
Country
Switzerland

Pubs By Year

External Links

Pub Categories

 
High Energy Astrophysical Phenomena (11)
 
Astrophysics (9)
 
Physics - Instrumentation and Detectors (5)
 
Instrumentation and Methods for Astrophysics (5)
 
Nuclear Experiment (3)
 
Cosmology and Nongalactic Astrophysics (1)
 
Physics - Space Physics (1)
 
General Relativity and Quantum Cosmology (1)
 
Solar and Stellar Astrophysics (1)
 
High Energy Physics - Experiment (1)
 
Physics - Accelerator Physics (1)
 
Physics - Plasma Physics (1)

Publications Authored By W. Hajdas

POLAR is space-borne detector designed for a precise measurement of gamma-ray polarization of the prompt emissions of Gamma-Ray Bursts in the energy range 50 keV - 500 keV. POLAR is a compact Compton polarimeter consisting of 40$\times$ 40 plastic scintillator bars read out by 25 multi-anode PMTs. In May 2015, we performed a series of tests of the POLAR flight model with 100\% polarized x-rays beams at the European Synchrotron Radiation Facility beam-line ID11 aming to study thresholds, crosstalk between channels and responses of POLAR flight model to polarized X-ray beams. Read More

As a space-borne detector POLAR is designed to conduct hard X-ray polarization measurements of gamma-ray bursts on the statistically significant sample of events and with an unprecedented accuracy. During its development phase a number of tests, calibrations runs and verification measurements were carried out in order to validate instrument functionality and optimize operational parameters. In this article we present results on gain optimization togeter with verification data obtained in the course of broad laboratory and environmental tests. Read More

Gamma-ray polarimetry is a new powerful tool to study the processes responsible for the emission from astrophysical sources and the environments in which this emission takes place. Few successful polarimetric measurements have however been performed thus far in the gamma-ray energy band due to the difficulties involved. POLAR is a dedicated polarimeter designed to perform high precision measurements of the polarization of the emission from gamma-ray burst in the 50-500 keV energy range. Read More

Gamma Ray Bursts (GRBs) are the strongest explosions in the universe which might be associated with creation of black holes. Magnetic field structure and burst dynamics may influence polarization of the emitted gamma-rays. Precise polarization detection can be an ultimate tool to unveil the true GRB mechanism. Read More

Meson factories are powerful drivers of diverse physics programmes. With beam powers already in the MW-regime attention has to be turned to target and beam line design to further significantly increase surface muon rates available for experiments. For this reason we have explored the possibility of using a neutron spallation target as a source of surface muons by performing detailed Geant4 simulations with pion production cross sections based on a parametrization of existing data. Read More

In spite of extensive observations and numerous theoretical studies in the past decades several key questions related with Gamma-Ray Bursts (GRB) emission mechanisms are still to be answered. Precise detection of the GRB polarization carried out by dedicated instruments can provide new data and be an ultimate tool to unveil their real nature. A novel space-borne Compton polarimeter POLAR onboard the Chinese space station TG2 is designed to measure linear polarization of gamma-rays arriving from GRB prompt emissions. Read More

Between the launch of the \textit{GGS Wind} spacecraft in 1994 November and the end of 2010, the Konus-\textit{Wind} experiment detected 296 short-duration gamma-ray bursts (including 23 bursts which can be classified as short bursts with extended emission). During this period, the IPN consisted of up to eleven spacecraft, and using triangulation, the localizations of 271 bursts were obtained. We present the most comprehensive IPN localization data on these events. Read More

In the first two years of operation of the Fermi GBM, the 9-spacecraft Interplanetary Network (IPN) detected 158 GBM bursts with one or two distant spacecraft, and triangulated them to annuli or error boxes. Combining the IPN and GBM localizations leads to error boxes which are up to 4 orders of magnitude smaller than those of the GBM alone. These localizations comprise the IPN supplement to the GBM catalog, and they support a wide range of scientific investigations. Read More

X-radiation from energetic electrons is the prime diagnostic of flare-accelerated electrons. The observed X-ray flux (and polarization state) is fundamentally a convolution of the cross-section for the hard X-ray emission process(es) in question with the electron distribution function, which is in turn a function of energy, direction, spatial location and time. To address the problems of particle propagation and acceleration one needs to infer as much information as possible on this electron distribution function, through a deconvolution of this fundamental relationship. Read More

The hard X-ray polarimeter POLAR aims to measure the linear polarization of the 50-500 keV photons arriving from the prompt emission of gamma-ray bursts (GRBs). The position in the sky of the detected GRBs is needed to determine their level of polarization. We present here a method by which, despite of the polarimeter incapability of taking images, GRBs can be roughly localized using POLAR alone. Read More

Between 1996 July and 2002 April, one or more spacecraft of the interplanetary network detected 787 cosmic gamma-ray bursts that were also detected by the Gamma-Ray Burst Monitor and/or Wide-Field X-Ray Camera experiments aboard the BeppoSAX spacecraft. During this period, the network consisted of up to six spacecraft, and using triangulation, the localizations of 475 bursts were obtained. We present the localization data for these events. Read More

A sample of almost 400 Gamma-ray bursts (GRBs) detected by the RHESSI satellite is studied statistically. We focus on GRB duration and hardness ratio and use the statistical chi^2 test and the F-test to compare the number of GRB subgroups in the RHESSI database with that of the BATSE database. Although some previous articles based on the BATSE catalog claim the existence of an intermediate GRB subgroup, besides long and short, we have not found a statistically significant intermediate subgroup in the RHESSI data. Read More

The Gamma-ray burst (GRB) database based on the data by the RHESSI satellite provides a unique and homogeneous database for future analyses. Here we present preliminary results on the duration and hardness ratio distributions for a sample of 228 GRBs observed with RHESSI. Read More

Some articles based on the BATSE gamma-ray burst (GRB) catalog claim the existence of a third population of GRBs, besides long and short. In this contribution we wanted to verify these claims with an independent data source, namely the RHESSI GRB catalog. Our verification is based on the statistical analysis of duration and hardness ratio of GRBs. Read More

A sample of 286 gamma-ray bursts (GRBs) detected by the Swift satellite and 358 GRBs detected by the RHESSI satellite are studied statistically. Previously published articles, based on the BATSE GRB Catalog, claimed the existence of an intermediate subgroup of GRBs with respect to duration. We use the statistical chi^2 test and the F-test to compare the number of GRB subgroups in our databases with the earlier BATSE results. Read More

Between 2000 November and 2006 May, one or more spacecraft of the interplanetary network (IPN) detected 226 cosmic gamma-ray bursts that were also detected by the FREGATE experiment aboard the HETE-II spacecraft. During this period, the IPN consisted of up to nine spacecraft, and using triangulation, the localizations of 157 bursts were obtained. We present the IPN localization data on these events. Read More

GRB 051103 is considered to be a candidate soft gamma repeater (SGR) extragalactic giant magnetar flare by virtue of its proximity on the sky to M81/M82, as well as its time history, localization, and energy spectrum. We have derived a refined interplanetary network localization for this burst which reduces the size of the error box by over a factor of two. We examine its time history for evidence of a periodic component, which would be one signature of an SGR giant flare, and conclude that this component is neither detected nor detectable under reasonable assumptions. Read More

A sample of 427 gamma-ray bursts (GRBs), measured by the RHESSI satellite, is studied statistically with respect to duration and hardness ratio. Standard statistical tests are used, such as $\chi^2$, F-test and the maximum likelihood ratio test, in order to compare the number of GRB groups in the RHESSI database with that of the BATSE database. Previous studies based on the BATSE Catalog claim the existence of an intermediate GRB group, besides the long and short groups. Read More

One of the challenges of the Swift era has been accurately determining Epeak for the prompt GRB emission. RHESSI, which is sensitive from 30 keV to 17 MeV, can extend spectral coverage above the Swift-BAT bandpass. Using the public Swift data, we present results of joint spectral fits for 26 bursts co-observed by RHESSI and Swift-BAT through May 2007. Read More

GRB 021206 is one of the brightest GRBs ever observed. Its prompt emission, as measured by RHESSI, shows an unexpected spectral feature. The spectrum has a peak energy of about 700 keV and can be described by a Band function up to 4. Read More

The Ge spectrometer of the RHESSI satellite is sensitive to Gamma Ray Bursts (GRBs) from about 40 keV up to 17 MeV, thus ideally complementing the Swift/BAT instrument whose sensitivity decreases above 150 keV. We present preliminary results of spectral fits of RHESSI GRB data. After describing our method, the RHESSI results are discussed and compared with Swift and Konus. Read More

This is a review about LISA and its technology demonstrator, LISA PathFinder. We first describe the conceptual problems which need to be overcome in order to set up a working interferometric detector of low frequency Gravitational Waves (GW), then summarise the solutions to them as currently conceived by the LISA mission team. This will show that some of these solutions require new technological abilities which are still under development, and which need proper test before being fully implemented. Read More

The giant flare of December 27, 2004 from SGR 1806-20 represents one of the most extraordinary events captured in over three decades of monitoring the gamma-ray sky. One measure of the intensity of the main peak is its effect on X- and gamma-ray instruments. RHESSI, an instrument designed to study the brightest solar flares, was completely saturated for ~0. Read More

2006Sep
Affiliations: 1PSI, Switzerland;, 2PSI, Switzerland;, 3PSI, Switzerland;, 4PSI, Switzerland;, 5PSI, Switzerland;, 6PSI, Switzerland;, 7ETHZ, Switzerland
Category: Astrophysics

The degree of linear polarization in solar flares has not yet been precisely determined despite multiple attempts to measure it with different missions. The high energy range in particular has very rarely been explored, due to its greater instrumental difficulties. We approached the subject using the Reuven Ramaty High Energy Spectroscopic Imager (RHESSI) satellite to study 6 X-class and 1 M-class flares in the energy range between 100 keV and 350 keV. Read More

The design and the simulated performances of a compact detector dedicated to the measurement of GRB photon polarization is presented. Such a detector would permit to answer the question ``are most of the GRB strongly polarized?'' in a mission of one year in space. Read More

Soft-gamma-ray repeaters (SGRs) are galactic X-ray stars that emit numerous short-duration (about 0.1 s) bursts of hard X-rays during sporadic active periods. They are thought to be magnetars: strongly magnetized neutron stars with emissions powered by the dissipation of magnetic energy. Read More

Using the RHESSI satellite as a Compton polarimeter, a recent study claimed that the prompt emission of GRB021206 was almost fully linearly polarized. This was challenged by a subsequent reanalysis. We present an novel approach, applying our method to the same data. Read More

The INTEGRAL Radiation Environment Monitor (IREM) is a payload supporting instrument on board the INTEGRAL satellite. The monitor continually measures electron and proton fluxes along the orbit and provides this information to the spacecraft on board data handler. The mission alert system broadcasts it to the payload instruments enabling them to react accordingly to the current radiation level. Read More