Vivienne Wild - For the CALIFA Collaboration,

Vivienne Wild
Are you Vivienne Wild?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Vivienne Wild
Affiliation
For the CALIFA Collaboration,
Location

Pubs By Year

Pub Categories

 
Cosmology and Nongalactic Astrophysics (25)
 
Astrophysics (18)
 
Astrophysics of Galaxies (12)
 
Instrumentation and Methods for Astrophysics (1)

Publications Authored By Vivienne Wild

Active galactic nuclei (AGN), particularly the most luminous AGN, are commonly assumed to be triggered through major mergers, however observational evidence for this scenario is mixed. To investigate any influence of galaxy mergers on AGN triggering and luminosities through cosmic time, we present a sample of 106 luminous X-ray selected type 1 AGN from the COSMOS survey. These AGN occupy a large redshift range (0. Read More

2017Feb
Authors: Michael R. Blanton, Matthew A. Bershady, Bela Abolfathi, Franco D. Albareti, Carlos Allende Prieto, Andres Almeida, Javier Alonso-García, Friedrich Anders, Scott F. Anderson, Brett Andrews, Erik Aquino-Ortíz, Alfonso Aragón-Salamanca, Maria Argudo-Fernández, Eric Armengaud, Eric Aubourg, Vladimir Avila-Reese, Carles Badenes, Stephen Bailey, Kathleen A. Barger, Jorge Barrera-Ballesteros, Curtis Bartosz, Dominic Bates, Falk Baumgarten, Julian Bautista, Rachael Beaton, Timothy C. Beers, Francesco Belfiore, Chad F. Bender, Andreas A. Berlind, Mariangela Bernardi, Florian Beutler, Jonathan C. Bird, Dmitry Bizyaev, Guillermo A. Blanc, Michael Blomqvist, Adam S. Bolton, Médéric Boquien, Jura Borissova, Remco van den Bosch, Jo Bovy, William N. Brandt, Jonathan Brinkmann, Joel R. Brownstein, Kevin Bundy, Adam J. Burgasser, Etienne Burtin, Nicolás G. Busca, Michele Cappellari, Maria Leticia Delgado Carigi, Joleen K. Carlberg, Aurelio Carnero Rosell, Ricardo Carrera, Brian Cherinka, Edmond Cheung, Yilen Gómez Maqueo Chew, Cristina Chiappini, Peter Doohyun Choi, Drew Chojnowski, Chia-Hsun Chuang, Haeun Chung, Rafael Fernando Cirolini, Nicolas Clerc, Roger E. Cohen, Johan Comparat, Luiz da Costa, Marie-Claude Cousinou, Kevin Covey, Jeffrey D. Crane, Rupert A. C. Croft, Irene Cruz-Gonzalez, Daniel Garrido Cuadra, Katia Cunha, Guillermo J. Damke, Jeremy Darling, Roger Davies, Kyle Dawson, Axel de la Macorra, Nathan De Lee, Timothée Delubac, Francesco Di Mille, Aleks Diamond-Stanic, Mariana Cano-Díaz, John Donor, Juan José Downes, Niv Drory, Hélion du Mas des Bourboux, Christopher J. Duckworth, Tom Dwelly, Jamie Dyer, Garrett Ebelke, Daniel J. Eisenstein, Eric Emsellem, Mike Eracleous, Stephanie Escoffier, Michael L. Evans, Xiaohui Fan, Emma Fernández-Alvar, J. G. Fernandez-Trincado, Diane K. Feuillet, Alexis Finoguenov, Scott W. Fleming, Andreu Font-Ribera, Alexander Fredrickson, Gordon Freischlad, Peter M. Frinchaboy, Lluís Galbany, R. Garcia-Dias, D. A. García-Hernández, Patrick Gaulme, Doug Geisler, Joseph D. Gelfand, Héctor Gil-Marín, Bruce A. Gillespie, Daniel Goddard, Violeta Gonzalez-Perez, Kathleen Grabowski, Paul J. Green, Catherine J. Grier, James E. Gunn, Hong Guo, Julien Guy, Alex Hagen, ChangHoon Hahn, Matthew Hall, Paul Harding, Sten Hasselquist, Suzanne L. Hawley, Fred Hearty, Jonay I. Gonzalez Hernández, Shirley Ho, David W. Hogg, Kelly Holley-Bockelmann, Jon A. Holtzman, Parker H. Holzer, Joseph Huehnerhoff, Timothy A. Hutchinson, Ho Seong Hwang, Héctor J. Ibarra-Medel, Gabriele da Silva Ilha, Inese I. Ivans, KeShawn Ivory, Kelly Jackson, Trey W. Jensen, Jennifer A. Johnson, Amy Jones, Henrik Jönsson, Eric Jullo, Vikrant Kamble, Karen Kinemuchi, David Kirkby, Francisco-Shu Kitaura, Mark Klaene, Gillian R. Knapp, Jean-Paul Kneib, Juna A. Kollmeier, Ivan Lacerna, Richard R. Lane, Dustin Lang, David R. Law, Daniel Lazarz, Jean-Marc Le Goff, Fu-Heng Liang, Cheng Li, Hongyu LI, Marcos Lima, Lihwai Lin, Yen-Ting Lin, Sara Bertran de Lis, Chao Liu, Miguel Angel C. de Icaza Lizaola, Dan Long, Sara Lucatello, Britt Lundgren, Nicholas K. MacDonald, Alice Deconto Machado, Chelsea L. MacLeod, Suvrath Mahadevan, Marcio Antonio Geimba Maia, Roberto Maiolino, Steven R. Majewski, Elena Malanushenko, Viktor Malanushenko, Arturo Manchado, Shude Mao, Claudia Maraston, Rui Marques-Chaves, Karen L. Masters, Cameron K. McBride, Richard M. McDermid, Brianne McGrath, Ian D. McGreer, Nicolás Medina Peña, Matthew Melendez, Andrea Merloni, Michael R. Merrifield, Szabolcs Meszaros, Andres Meza, Ivan Minchev, Dante Minniti, Takamitsu Miyaji, Surhud More, John Mulchaey, Francisco Müller-Sánchez, Demitri Muna, Ricardo R. Munoz, Adam D. Myers, Preethi Nair, Kirpal Nandra, Janaina Correa do Nascimento, Alenka Negrete, Melissa Ness, Jeffrey A. Newman, Robert C. Nichol, David L. Nidever, Christian Nitschelm, Pierros Ntelis, Julia E. O'Connell, Ryan J. Oelkers, Audrey Oravetz, Daniel Oravetz, Zach Pace, Nelson Padilla, Nathalie Palanque-Delabrouille, Pedro Alonso Palicio, Kaike Pan, Taniya Parikh, Isabelle Pâris, Changbom Park, Alim Y. Patten, Sebastien Peirani, Marcos Pellejero-Ibanez, Samantha Penny, Will J. Percival, Ismael Perez-Fournon, Patrick Petitjean, Matthew M. Pieri, Marc Pinsonneault, Alice Pisani, Radosław Poleski, Francisco Prada, Abhishek Prakash, Anna Bárbara de Andrade Queiroz, M. Jordan Raddick, Anand Raichoor, Sandro Barboza Rembold, Hannah Richstein, Rogemar A. Riffel, Rogério Riffel, Hans-Walter Rix, Annie C. Robin, Constance M. Rockosi, Sergio Rodríguez-Torres, A. Roman-Lopes, Carlos Román-Zúñiga, Margarita Rosado, Ashley J. Ross, Graziano Rossi, John Ruan, Rossana Ruggeri, Eli S. Rykoff, Salvador Salazar-Albornoz, Mara Salvato, Ariel G. Sánchez, David Sánchez Aguado, José R. Sánchez-Gallego, Felipe A. Santana, Basílio Xavier Santiago, Conor Sayres, Ricardo P. Schiavon, Jaderson da Silva Schimoia, Edward F. Schlafly, David J. Schlegel, Donald P. Schneider, Mathias Schultheis, William J. Schuster, Axel Schwope, Hee-Jong Seo, Zhengyi Shao, Shiyin Shen, Matthew Shetrone, Michael Shull, Joshua D. Simon, Danielle Skinner, M. F. Skrutskie, Anže Slosar, Verne V. Smith, Jennifer S. Sobeck, Flavia Sobreira, Garrett Somers, Diogo Souto, David V. Stark, Keivan Stassun, Fritz Stauffer, Matthias Steinmetz, Thaisa Storchi-Bergmann, Alina Streblyanska, Guy S. Stringfellow, Genaro Suárez, Jing Sun, Nao Suzuki, Laszlo Szigeti, Manuchehr Taghizadeh-Popp, Baitian Tang, Charling Tao, Jamie Tayar, Mita Tembe, Johanna Teske, Aniruddha R. Thakar, Daniel Thomas, Benjamin A. Thompson, Jeremy L. Tinker, Patricia Tissera, Rita Tojeiro, Hector Hernandez Toledo, Sylvain de la Torre, Christy Tremonti, Nicholas W. Troup, Octavio Valenzuela, Inma Martinez Valpuesta, Jaime Vargas-González, Mariana Vargas-Magaña, Jose Alberto Vazquez, Sandro Villanova, M. Vivek, Nicole Vogt, David Wake, Rene Walterbos, Yuting Wang, Benjamin Alan Weaver, Anne-Marie Weijmans, David H. Weinberg, Kyle B. Westfall, David G. Whelan, Vivienne Wild, John Wilson, W. M. Wood-Vasey, Dominika Wylezalek, Ting Xiao, Renbin Yan, Meng Yang, Jason E. Ybarra, Christophe Yèche, Nadia Zakamska, Olga Zamora, Pauline Zarrouk, Gail Zasowski, Kai Zhang, Gong-Bo Zhao, Zheng Zheng, Zhi-Min Zhou, Guangtun B. Zhu, Manuela Zoccali, Hu Zou

We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratio in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially-resolved spectroscopy for thousands of nearby galaxies (median redshift of z = 0. Read More

We present evidence for halo assembly bias as a function of geometric environment. By classifying GAMA galaxy groups as residing in voids, sheets, filaments or knots using a tidal tensor method, we find that low-mass haloes that reside in knots are older than haloes of the same mass that reside in voids. This result provides direct support to theories that link strong halo tidal interactions with halo assembly times. Read More

2016Aug
Authors: SDSS Collaboration, Franco D. Albareti, Carlos Allende Prieto, Andres Almeida, Friedrich Anders, Scott Anderson, Brett H. Andrews, Alfonso Aragon-Salamanca, Maria Argudo-Fernandez, Eric Armengaud, Eric Aubourg, Vladimir Avila-Reese, Carles Badenes, Stephen Bailey, Beatriz Barbuy, Kat Barger, Jorge Barrera-Ballesteros, Curtis Bartosz, Sarbani Basu, Dominic Bates, Giuseppina Battaglia, Falk Baumgarten, Julien Baur, Julian Bautista, Timothy C. Beers, Francesco Belfiore, Matthew Bershady, Sara Bertran de Lis, Jonathan C. Bird, Dmitry Bizyaev, Guillermo A. Blanc, Michael Blanton, Michael Blomqvist, Adam S. Bolton, J. Borissova, Jo Bovy, William Nielsen Brandt, Jonathan Brinkmann, Joel R. Brownstein, Kevin Bundy, Etienne Burtin, Nicolas G. Busca, Hugo Orlando Camacho Chavez, M. Cano Diaz, Michele Cappellari, Ricardo Carrera, Yanping Chen, Brian Cherinka, Edmond Cheung, Cristina Chiappini, Drew Chojnowski, Chia-Hsun Chuang, Haeun Chung, Rafael Fernando Cirolini, Nicolas Clerc, Roger E. Cohen, Julia M. Comerford, Johan Comparat, Marie-Claude Cousinou, Kevin Covey, Jeffrey D. Crane, Rupert Croft, Katia Cunha, Luiz da Costa, Gabriele da Silva Ilha, Jeremy Darling, James W. Davidson Jr., Kyle Dawson, Nathan De Lee, Axel de la Macorra, Sylvain de la Torre, Alice Deconto Machado, Timothee Delubac, Aleksandar M. Diamond-Stanic, John Donor, Juan Jose Downes, Niv Drory, Helion du Mas des Bourboux, Cheng Du, Tom Dwelly, Garrett Ebelke, Arthur Eigenbrot, Daniel J. Eisenstein, Yvonne P. Elsworth, Eric Emsellem, Michael Eracleous, Stephanie Escoffier, Michael L. Evans, Jesus Falcon-Barroso, Xiaohui Fan, Ginevra Favole, Emma Fernandez-Alvar, J. G. Fernandez-Trincado, Diane Feuillet, Scott W. Fleming, Andreu Font-Ribera, Gordon Freischlad, Peter Frinchaboy, Hai Fu, Yang Gao, D. A. Garcia-Hernandez, Ana E. Garcia Perez, Rafael A. Garcia, R. Garcia-Dias, Patrick Gaulme, Junqiang Ge, Douglas Geisler, Hector Gil Marin, Bruce Gillespie, Leo Girardi, Daniel Goddard, Yilen Gomez Maqueo Chew, Violeta Gonzalez-Perez, Kathleen Grabowski, Paul Green, Catherine J. Grier, Thomas Grier, Hong Guo, Julien Guy, Alex Hagen, Matt Hall, Paul Harding, R. E. Harley, Sten Hasselquist, Suzanne Hawley, Christian R. Hayes, Fred Hearty, Saskia Hekker, Hector Hernandez Toledo, Shirley Ho, David W. Hogg, Kelly Holley-Bockelmann, Jon A. Holtzman, Parker H. Holzer, Jian Hu, Daniel Huber, Timothy Alan Hutchinson, Ho Seong Hwang, Hector J. Ibarra-Medel, Inese I. Ivans, KeShawn Ivory, Kurt Jaehnig, Trey W. Jensen, Jennifer A. Johnson, Amy Jones, Eric Jullo, T. Kallinger, Karen Kinemuchi, David Kirkby, Mark Klaene, Jean-Paul Kneib, Juna A. Kollmeier, Ivan Lacerna, Richard R. Lane, Dustin Lang, Pierre Laurent, David R. Law, Jean-Marc Le Goff, Alexie Leauthaud, Cheng Li, Ran Li, Chen Li, Niu Li, Fu-Heng Liang, Yu Liang, Marcos Lima, Lihwai Lin, Lin Lin, Yen-Ting Lin, Dan Long, Sara Lucatello, Nicholas MacDonald, Chelsea L. MacLeod, J. Ted Mackereth, Suvrath Mahadevan, Marcio Antonio-Geimba Maia, Roberto Maiolino, Steven R. Majewski, Olena Malanushenko, Nicolas Dullius Mallmann, Arturo Manchado, Claudia Maraston, Rui Marques-Chaves, Inma Martinez Valpuesta, Karen L. Masters, Savita Mathur, Ian D. McGreer, Andrea Merloni, Michael R. Merrifield, Szabolcs Meszaros, Andres Meza, Andrea Miglio, Ivan Minchev, Karan Molaverdikhani, Antonio D. Montero-Dorta, Benoit Mosser, Demitri Muna, Adam Myers, Preethi Nair, Kirpal Nandra, Melissa Ness, Jeffrey A. Newman, Robert C. Nichol, David L. Nidever, Christian Nitschelm, Julia O'Connell, Audrey Oravetz, Nelson Padilla, Nathalie Palanque-Delabrouille, Kaike Pan, John Parejko, Isabelle Paris, John A. Peacock, Sebastien Peirani, Marcos Pellejero-Ibanez, Samantha Penny, Will J. Percival, Jeffrey W. Percival, Ismael Perez-Fournon, Patrick Petitjean, Matthew Pieri, Marc H. Pinsonneault, Alice Pisani, Francisco Prada, Abhishek Prakash, Natalie Price-Jones, M. Jordan Raddick, Mubdi Rahman, Anand Raichoor, Sandro Barboza Rembold, A. M. Reyna, James Rich, Hannah Richstein, Jethro Ridl, Rogerio Riffel, Rogemar A. Riffel, Hans-Walter Rix, Annie C. Robin, Constance M. Rockosi, Sergio Rodriguez-Torres, Thaise S. Rodrigues, Natalie Roe, A. Roman Lopes, Carlos Roman-Zuniga, Ashley J. Ross, Graziano Rossi, John Ruan, Rossana Ruggeri, Jessie C. Runnoe, Salvador Salazar-Albornoz, Mara Salvato, Ariel G. Sanchez, Sebastian F. Sanchez, Jose R. Sanchez-Gallego, Basilio Xavier Santiago, Ricardo Schiavon, Jaderson S. Schimoia, Eddie Schlafly, David J. Schlegel, Donald P. Schneider, Ralph Schoenrich, Mathias Schultheis, Axel Schwope, Hee-Jong Seo, Aldo Serenelli, Branimir Sesar, Zhengyi Shao, Matthew Shetrone, Michael Shull, Victor Silva Aguirre, M. F. Skrutskie, Anže Slosar, Michael Smith, Verne V. Smith, Jennifer Sobeck, Garrett Somers, Diogo Souto, David V. Stark, Keivan G. Stassun, Matthias Steinmetz, Dennis Stello, Thaisa Storchi Bergmann, Michael A. Strauss, Alina Streblyanska, Guy S. Stringfellow, Genaro Suarez, Jing Sun, Manuchehr Taghizadeh-Popp, Baitian Tang, Charling Tao, Jamie Tayar, Mita Tembe, Daniel Thomas, Jeremy Tinker, Rita Tojeiro, Christy Tremonti, Nicholas Troup, Jonathan R. Trump, Eduardo Unda-Sanzana, O. Valenzuela, Remco van den Bosch, Mariana Vargas-Magana, Jose Alberto Vazquez, Sandro Villanova, M. Vivek, Nicole Vogt, David Wake, Rene Walterbos, Yuting Wang, Enci Wang, Benjamin Alan Weaver, Anne-Marie Weijmans, David H. Weinberg, Kyle B. Westfall, David G. Whelan, Eric Wilcots, Vivienne Wild, Rob A. Williams, John Wilson, W. M. Wood-Vasey, Dominika Wylezalek, Ting Xiao, Renbin Yan, Meng Yang, Jason E. Ybarra, Christophe Yeche, Fang-Ting Yuan, Nadia Zakamska, Olga Zamora, Gail Zasowski, Kai Zhang, Cheng Zhao, Gong-Bo Zhao, Zheng Zheng, Zheng Zheng, Zhi-Min Zhou, Guangtun Zhu, Joel C. Zinn, Hu Zou

The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) began observations in July 2014. It pursues three core programs: APOGEE-2, MaNGA, and eBOSS. In addition, eBOSS contains two major subprograms: TDSS and SPIDERS. Read More

2016Aug
Affiliations: 1St Andrews, 2Nottingham, 3Edinburgh, 4St Andrews, 5St Andrews, 6Oxford, 7Nottingham, 8Edinburgh

We present the evolution in the number density and stellar mass functions of photometrically selected post-starburst galaxies in the UKIDSS Deep Survey (UDS), with redshifts of 0.510. We find that this transitionary species of galaxy is rare at all redshifts, contributing ~5% of the total population at z~2, to <1% by z~0. Read More

Submillimetre galaxies (SMGs) are among the most luminous dusty galaxies in the Universe, but their true nature remains unclear; are SMGs the progenitors of the massive elliptical galaxies we see in the local Universe, or are they just a short-lived phase among more typical star-forming galaxies? To explore this problem further, we investigate the clustering of SMGs identified in the SCUBA-2 Cosmology Legacy Survey. We use a catalogue of submillimetre ($850\mu$m) source identifications derived using a combination of radio counterparts and colour/IR selection to analyse a sample of 914 SMGs in the UKIDSS Ultra Deep Survey (UDS), making this the largest high redshift sample of these galaxies to date. Using angular cross-correlation techniques, we estimate the halo masses for this large sample of SMGs and compare them with passive and star-forming galaxies selected in the same field. Read More

2016Mar
Affiliations: 1Nottingham, 2Nottingham, 3St Andrews, 4Nottingham, 5Zürich, 6Edinburgh, 7Edinburgh, 8Edinburgh, 9St Andrews, 10UK Astronomy Technology Ctr

Despite decades of study, we still do not fully understand why some massive galaxies abruptly switch off their star formation in the early Universe, and what causes their rapid transition to the red sequence. Post-starburst galaxies provide a rare opportunity to study this transition phase, but few have currently been spectroscopically identified at high redshift ($z>1$). In this paper we present the spectroscopic verification of a new photometric technique to identify post-starbursts in high-redshift surveys. Read More

Post-starbursts are galaxies in transition from the blue cloud to the red sequence. Although they are rare today, integrated over time they may be an important pathway to the red sequence. This work uses SDSS, GALEX, and WISE observations to identify the evolutionary sequence from starbursts to fully quenched post-starbursts in the narrow mass range $\log M(M_\odot) = 10. Read More

2014May
Affiliations: 1For the CALIFA Collaboration,, 2For the CALIFA Collaboration,, 3For the CALIFA Collaboration,, 4For the CALIFA Collaboration,, 5For the CALIFA Collaboration,, 6For the CALIFA Collaboration,, 7For the CALIFA Collaboration,, 8For the CALIFA Collaboration,, 9For the CALIFA Collaboration,, 10For the CALIFA Collaboration,, 11For the CALIFA Collaboration,, 12For the CALIFA Collaboration,, 13For the CALIFA Collaboration,, 14For the CALIFA Collaboration,, 15For the CALIFA Collaboration,, 16For the CALIFA Collaboration,, 17For the CALIFA Collaboration,, 18For the CALIFA Collaboration,, 19For the CALIFA Collaboration,, 20For the CALIFA Collaboration,, 21For the CALIFA Collaboration,, 22For the CALIFA Collaboration,, 23For the CALIFA Collaboration,, 24For the CALIFA Collaboration,, 25For the CALIFA Collaboration,, 26For the CALIFA Collaboration,, 27For the CALIFA Collaboration,, 28For the CALIFA Collaboration,, 29For the CALIFA Collaboration,, 30For the CALIFA Collaboration,, 31For the CALIFA Collaboration,, 32For the CALIFA Collaboration,, 33For the CALIFA Collaboration,, 34For the CALIFA Collaboration,, 35For the CALIFA Collaboration,, 36For the CALIFA Collaboration,, 37For the CALIFA Collaboration,, 38For the CALIFA Collaboration,, 39For the CALIFA Collaboration,, 40For the CALIFA Collaboration,, 41For the CALIFA Collaboration,, 42For the CALIFA Collaboration,, 43For the CALIFA Collaboration,, 44For the CALIFA Collaboration,, 45For the CALIFA Collaboration,, 46For the CALIFA Collaboration,

We present optical integral field spectroscopy (IFS) observations of the Mice, a major merger between two massive (>10^11Msol) gas-rich spirals NGC4676A and B, observed between first passage and final coalescence. The spectra provide stellar and gas kinematics, ionised gas properties and stellar population diagnostics, over the full optical extent of both galaxies. The Mice provide a perfect case study highlighting the importance of IFS data for improving our understanding of local galaxies. Read More

2014Jan
Affiliations: 1UNiv. of St Andrews, 2Univ. of Nottingham, 3ATC, Edinburgh, 4ROE, Edinburgh, 5ROE, Edinburgh, 6ROE, Edinburgh, 7ROE, Edinburgh, 8Univ. of Nottingham, 9Univ. of Nottingham, 10Univ. of Nottingham

We present a new method to classify the broad band optical-NIR spectral energy distributions (SEDs) of galaxies using three shape parameters (super-colours) based on a Principal Component Analysis of model SEDs. As well as providing a compact representation of the wide variety of SED shapes, the method allows for easy visualisation of information loss and biases caused by the incomplete sampling of the rest-frame SED as a function of redshift. We apply the method to galaxies in the UKIDSS Ultra Deep Survey with 0. Read More

[Abridged] We present a new approach to investigate the content and spatial distribution of dust in structurally unresolved star-forming galaxies from the observed dependence of integrated spectral properties on galaxy inclination. We develop an innovative combination of generic models of radiative transfer (RT) in dusty media with a prescription for the spectral evolution of galaxies, via the association of different geometric components of galaxies with stars in different age ranges. We show that a wide range of RT models all predict a quasi-universal relation between slope of the attenuation curve at any wavelength and V-band attenuation optical depth in the diffuse interstellar medium (ISM), at all galaxy inclinations. Read More

We present a study exploring the impact of a starburst on the properties of the surrounding circum-galactic medium (CGM): gas located beyond the galaxy's stellar body and extending out to the virial radius (200 kpc). We obtained ultraviolet spectroscopic data from the Cosmic Origin Spectrograph (COS) probing the CGM of 20 low-redshift foreground galaxies using background QSOs. Our sample consists of starburst and control galaxies. Read More

We measure the gas-phase oxygen abundances of ~3000 star-forming galaxies at z=0.05-0.75 using optical spectrophotometry from the AGN and Galaxy Evolution Survey (AGES), a spectroscopic survey of I_AB<20. Read More

In this work we present an atlas of composite spectra of galaxies based on the data of the Sloan Digital Sky Survey Data Release 7 (SDSS DR7). Galaxies are classified by colour, nuclear activity and star-formation activity to calculate average spectra of high signal-to-noise ratio and resolution (S/N = 132 - 4760 at {Dlambda = 1 A), using an algorithm that is robust against outliers. Besides composite spectra, we also compute the first five principal components of the distributions in each galaxy class to characterize the nature of variations of individual spectra around the averages. Read More

We present a systematic study of the shape of the dust attenuation curve in star-forming galaxies from the far ultraviolet to the near infrared (0.15-2microns), as a function of specific star formation rate (sSFR) and axis ratio (b/a), for galaxies with and without a significant bulge. Our sample comprises 23,000 (15,000) galaxies with a median redshift of 0. Read More

2011May
Authors: Norman A. Grogin, Dale D. Kocevski, S. M. Faber, Henry C. Ferguson, Anton M. Koekemoer, Adam G. Riess, Viviana Acquaviva, David M. Alexander, Omar Almaini, Matthew L. N. Ashby, Marco Barden, Eric F. Bell, Frédéric Bournaud, Thomas M. Brown, Karina I. Caputi, Stefano Casertano, Paolo Cassata, Marco Castellano, Peter Challis, Ranga-Ram Chary, Edmond Cheung, Michele Cirasuolo, Christopher J. Conselice, Asantha Roshan Cooray, Darren J. Croton, Emanuele Daddi, Tomas Dahlen, Romeel Davé, Duília F. de Mello, Avishai Dekel, Mark Dickinson, Timothy Dolch, Jennifer L. Donley, James S. Dunlop, Aaron A. Dutton, David Elbaz, Giovanni G. Fazio, Alexei V. Filippenko, Steven L. Finkelstein, Adriano Fontana, Jonathan P. Gardner, Peter M. Garnavich, Eric Gawiser, Mauro Giavalisco, Andrea Grazian, Yicheng Guo, Nimish P. Hathi, Boris Häussler, Philip F. Hopkins, Jia-Sheng Huang, Kuang-Han Huang, Saurabh W. Jha, Jeyhan S. Kartaltepe, Robert P. Kirshner, David C. Koo, Kamson Lai, Kyoung-Soo Lee, Weidong Li, Jennifer M. Lotz, Ray A. Lucas, Piero Madau, Patrick J. McCarthy, Elizabeth J. McGrath, Daniel H. McIntosh, Ross J. McLure, Bahram Mobasher, Leonidas A. Moustakas, Mark Mozena, Kirpal Nandra, Jeffrey A. Newman, Sami-Matias Niemi, Kai G. Noeske, Casey J. Papovich, Laura Pentericci, Alexandra Pope, Joel R. Primack, Abhijith Rajan, Swara Ravindranath, Naveen A. Reddy, Alvio Renzini, Hans-Walter Rix, Aday R. Robaina, Steven A. Rodney, David J. Rosario, Piero Rosati, Sara Salimbeni, Claudia Scarlata, Brian Siana, Luc Simard, Joseph Smidt, Rachel S. Somerville, Hyron Spinrad, Amber N. Straughn, Louis-Gregory Strolger, Olivia Telford, Harry I. Teplitz, Jonathan R. Trump, Arjen van der Wel, Carolin Villforth, Risa H. Wechsler, Benjamin J. Weiner, Tommy Wiklind, Vivienne Wild, Grant Wilson, Stijn Wuyts, Hao-Jing Yan, Min S. Yun

The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) is designed to document the first third of galactic evolution, over the approximate redshift (z) range 8--1.5. It will image >250,000 distant galaxies using three separate cameras on the Hubble Space Telescope, from the mid-ultraviolet to the near-infrared, and will find and measure Type Ia supernovae at z>1. Read More

2011May
Authors: Anton M. Koekemoer, S. M. Faber, Henry C. Ferguson, Norman A. Grogin, Dale D. Kocevski, David C. Koo, Kamson Lai, Jennifer M. Lotz, Ray A. Lucas, Elizabeth J. McGrath, Sara Ogaz, Abhijith Rajan, Adam G. Riess, Steve A. Rodney, Louis Strolger, Stefano Casertano, Marco Castellano, Tomas Dahlen, Mark Dickinson, Timothy Dolch, Adriano Fontana, Mauro Giavalisco, Andrea Grazian, Yicheng Guo, Nimish P. Hathi, Kuang-Han Huang, Arjen van der Wel, Hao-Jing Yan, Viviana Acquaviva, David M. Alexander Omar Almaini, Matthew L. N. Ashby, Marco Barden, Eric F. Bell, Frédéric Bournaud, Thomas M. Brown, Karina I. Caputi, Paolo Cassata, Peter Challis, Ranga-Ram Chary, Edmond Cheung, Michele Cirasuolo, Christopher J. Conselice, Asantha Roshan Cooray, Darren J. Croton, Emanuele Daddi, Romeel Davé, Duilia F. de Mello, Loic de Ravel, Avishai Dekel, Jennifer L. Donley, James S. Dunlop, Aaron A. Dutton, David Elbaz, Giovanni G. Fazio, Alex V. Filippenko, Steven L. Finkelstein, Chris Frazer, Jonathan P. Gardner, Peter M. Garnavich, Eric Gawiser, Ruth Gruetzbauch, Will G. Hartley, Boris Häussler, Jessica Herrington, Philip F. Hopkins, Jia-Sheng Huang, Saurabh Jha, Andrew Johnson, Jeyhan S. Kartaltepe, Ali Ahmad Khostovan, Robert P. Kirshner, Caterina Lani, Kyoung-Soo Lee, Weidong Li, Piero Madau, Patrick J. McCarthy, Daniel H. McIntosh, Ross J. McLure, Conor McPartland, Bahram Mobasher, Heidi Moreira, Alice Mortlock, Leonidas A. Moustakas, Mark Mozena, Kirpal Nandra, Jeffrey A. Newman, Jennifer L. Nielsen, Sami Niemi, Kai G. Noeske, Casey J. Papovich, Laura Pentericci, Alexandra Pope, Joel R. Primack, Swara Ravindranath, Naveen A. Reddy, Alvio Renzini, Hans-Walter Rix, Aday R. Robaina, David J. Rosario, Piero Rosati, Sara Salimbeni, Claudia Scarlata, Brian Siana, Luc Simard, Joseph Smidt, Diana Snyder, Rachel S. Somerville, Hyron Spinrad, Amber N. Straughn, Olivia Telford, Harry I. Teplitz, Jonathan R. Trump, Carlos Vargas, Carolin Villforth, Cory R. Wagner, Pat Wandro, Risa H. Wechsler, Benjamin J. Weiner, Tommy Wiklind, Vivienne Wild, Grant Wilson, Stijn Wuyts, Min S. Yun

This paper describes the Hubble Space Telescope imaging data products and data reduction procedures for the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS). This survey is designed to document the evolution of galaxies and black holes at $z\sim1.5-8$, and to study Type Ia SNe beyond $z>1. Read More

We study the connections between on-going star formation, galaxy mass, and extended halo gas, in order to distinguish between starburst-driven outflows and infalling clouds that produce the majority of observed MgII absorbers at large galactic radii (>~ 10 h^{-1} kpc) and to gain insights into halo gas contents around galaxies. We present new measurements of total stellar mass (M_star), H-alpha emission line strength (EW(H-alpha)), and specific star formation rate (sSFR) for the 94 galaxies published in H.-W. Read More

The Sloan Digital Sky Survey (SDSS) automated spectroscopic reduction pipeline provides >1.5 million intermediate resolution, R~2000, moderate signal-to-noise ratio (SNR), SNR~15, astronomical spectra of unprecedented homogeneity that cover the wavelength range 3800-9200AA. However, there remain significant systematic residuals in many spectra due to the sub-optimal subtraction of the strong OH sky emission lines longward of 6700AA. Read More

2010Aug

Optical nebular emission lines are commonly used to estimate the star formation rate of galaxies and the black hole accretion rate of their central active nucleus. The accuracy of the conversion from line strengths to physical properties depends upon the accuracy to which the lines can be corrected for dust attenuation. For studies of single galaxies with normal amounts of dust, most dust corrections result in the same derived properties within the errors. Read More

We consider five indicators for intrinsic AGN luminosity: the luminosities of the [OIII]$\lambda$5007 line, the [OIV]25.89$\mu$m line, the mid-infrared (MIR) continuum emission by the torus, and the radio and hard X-ray (E $>$ 10keV) continuum emission. We compare these different proxies using two complete samples of low-redshift type 2 AGN selected in a homogeneous way based on different indicators: an optically selected [OIII] sample and a mid-infrared selected 12$\mu$m sample. Read More

We use measurements of the HI content, stellar mass and star formation rates in ~190 massive galaxies with stellar masses greater than 10^10 Msun, obtained from the Galex Arecibo SDSS Survey (GASS) described in Paper I (Catinella et al. 2010) to explore the global scaling relations associated with the bin-averaged ratio of the star formation rate over the HI mass, which we call the HI-based star formation efficiency (SFE). Unlike the mean specific star formation rate, which decreases with stellar mass and stellar mass surface density, the star formation efficiency remains relatively constant across the sample with a value close to SFE = 10^-9. Read More

2010Mar

A systematic investigation of the relationship between different redshift estimation schemes for more than 91000 quasars in the Sloan Digital Sky Survey (SDSS) Data Release 6 (DR6) is presented. The publicly available SDSS quasar redshifts are shown to possess systematic biases of Dz/(1+z)>=0.002 (600km/s) over both small (dz~0. Read More

(Abridged) Star formation-driven outflows are a critical phenomenon in theoretical treatments of galaxy evolution, despite the limited ability of observations to trace them across cosmological timescales. If the strongest MgII absorption-line systems detected in the spectra of background quasars arise in such outflows, "ultra-strong" MgII (USMgII) absorbers would identify significant numbers of galactic winds over a huge baseline in cosmic time, in a manner independent of the luminous properties of the galaxy. To this end, we present the first detailed imaging and spectroscopic study of the fields of two USMgII absorber systems culled from a statistical absorber catalog, with the goal of understanding the physical processes leading to the large velocity spreads that define such systems. Read More

2010Feb
Affiliations: 1Institut d'Astrophysique de Paris, 2Johns Hopkins University, 3Institut d'Astrophysique de Paris

The mass of super massive black holes at the centre of galaxies is tightly correlated with the mass of the galaxy bulges which host them. This observed correlation implies a mechanism of joint growth, but the precise physical processes responsible are a matter of some debate. Here we report on the growth of black holes in 400 local galactic bulges which have experienced a strong burst of star formation in the past 600Myr. Read More

Large optical surveys provide an unprecedented census of galaxies in the local Universe, forming an invaluable framework into which more detailed studies of objects can be placed. But how useful are optical surveys for understanding the co-evolution of black holes and galaxies, given their limited wavelength coverage, selection criteria, and depth? In this conference paper I present work-in-progress comparing optical and mid-IR diagnostics of three "unusual" low redshift populations (luminous Seyferts, dusty Balmer-strong AGN, ULIRGs) with a set of ordinary star-forming galaxies from the SDSS. I address the questions: How well do the mid-infrared and optical diagnostics of star formation and AGN strength agree? To what extent do optical surveys allow us to include extreme, dusty, morphologically disturbed galaxies in our "complete" census of black hole-galaxy co-evolution? Read More

We present an empirical connection between cold gas in galactic halos and star formation. Using a sample of more than 8,500 MgII absorbers from SDSS quasar spectra, we report the detection of a 15 sigma correlation between the rest equivalent width W0 of MgII absorbers and the associated OII luminosity, an estimator of star formation rate. This correlation has interesting implications: using only observable quantities we show that MgII absorbers trace a substantial fraction of the global OII luminosity density and recover the overall star formation history of the Universe derived from classical emission estimators up to z~2. Read More

Understanding the details of how the red sequence is built is a key question in galaxy evolution. What are the relative roles of gas-rich vs. dry mergers, major vs. Read More

We investigate the recent and current star formation activity of galaxies as function of distance from the cluster center in a sample of 521 SDSS clusters at z<0.1. We show that when the BCGs are excluded from the galaxy sample, there is no evidence for mass segregation in the clusters, so that differences in cluster and field populations cannot simply be attributed to different mass functions. Read More

Recent detailed studies of Narrow Absorption Line (NAL) systems in QSO-spectra have revealed that at least 50% of QSOs have NALs associated with the central engine, and in most cases they are found to be outflowing. Will studies of NALs provide the much sort after evidence for ubiquitous QSO feedback that can halt the formation of stars in galaxies? I present new results on the distribution of line-of-sight velocity offsets between MgII absorbers and their background QSOs, based on a large catalogue of absorbers from SDSS DR6 and greatly improved QSO-redshift estimates. My analysis reveals a high-velocity population of MgII NALs extending out to at least 6000 km/s from the QSOs, which cannot be ascribed to the clustering of local galaxies, similar to that observed recently for CIV absorbers. Read More

In the last decade we have seen an enormous increase in the size and quality of spectroscopic galaxy surveys, both at low and high redshift. New statistical techniques to analyse large portions of galaxy spectra are now finding favour over traditional index based methods. Here we will review a new robust and iterative Principal Component Analysis (PCA) algorithm, which solves several common issues with classic PCA. Read More

2008Oct
Affiliations: 1IAP Paris, 2IAP Paris, 3Uni-Sternwarte Munich, 4Marseille, 5IAP Paris, 6Andrzej Soltan Institute, 7Marseille, 8Marseille
Category: Astrophysics

From the VIMOS VLT DEEP Survey (VVDS) we select a sample of 16 galaxies with spectra which identify them as having recently undergone a strong starburst and subsequent fast quenching of star formation. These post-starburst galaxies lie in the redshift range 0.5Read More

Modern spectroscopic databases provide a wealth of information about the physical processes and environments associated with astrophysical populations. Techniques such as blind source separation (BSS), in which sets of spectra are decomposed into a number of components, offer the prospect of identifying the signatures of the underlying physical emission processes. Principle Component Analysis (PCA) has been applied with some success but is severely limited by the inherent orthogonality restriction that the components must satisfy. Read More

We have used the Sloan Digital Sky Survey (SDSS) to undertake an investigation of lopsidedness in a sample of ~25,000 nearby galaxies (z < 0.06). We use the m=1 azimuthal Fourier mode between the 50% and 90% light radii as our measure of lopsidedness. Read More

2008Sep
Affiliations: 1The Johns Hopkins University, 2Max Planck Institute for Astrophysics, 3The Johns Hopkins University, 4Eotvos Lorand University, 5The Johns Hopkins University
Category: Astrophysics

We present a novel technique to overcome the limitations of the applicability of Principal Component Analysis to typical real-life data sets, especially astronomical spectra. Our new approach addresses the issues of outliers, missing information, large number of dimensions and the vast amount of data by combining elements of robust statistics and recursive algorithms that provide improved eigensystem estimates step-by-step. We develop a generic mechanism for deriving reliable eigenspectra without manual data censoring, while utilising all the information contained in the observations. Read More

We present a new method to estimate the average star formation rate per unit stellar mass (SSFR) of a stacked population of galaxies. We combine the spectra of 600-1000 galaxies with similar stellar masses and parameterise the star formation history of this stacked population using a set of exponentially declining functions. The strength of the Hydrogen Balmer absorption line series in the rest-frame wavelength range 3750-4150\AA is used to constrain the SSFR by comparing with a library of models generated using the BC03 stellar population code. Read More

We present observations of CaII, ZnII, and CrII absorption lines in 16 DLAs and 6 subDLAs at 0.6 < z < 1.3, obtained for the dual purposes of: (i) clarifying the relationship between DLAs and absorbers selected via strong CaII lines, and (ii) increasing the still limited sample of Zn and Cr abundances in this redshift range. Read More

2008Feb
Affiliations: 1MPA-Garching, 2MPA-Garching, 3MPA-Garching, 4Chicago, 5GEPI, Paris, 6JHU, 7York University, 8Utkal, 9University of Illinois, 10Pennsylvania, 11Pennsylvania
Category: Astrophysics

Using data from the Sloan Digital Sky Survey data release 3 (SDSS DR3) we investigate how narrow (<700km/s) CIV and MgII quasar absorption line systems are distributed around quasars. The CIV absorbers lie in the redshift range 1.6 < z < 4 and the MgII absorbers in the range 0. Read More

Recent observations suggest the incidence of strong intervening MgII absorption systems along the line-of-sight to gamma ray burst (GRB) afterglows is significantly higher than expected from analogous quasar sightlines. One possible explanation is a geometric effect, arising because MgII absorbers only partially cover the quasar continuum regions, in which case MgII absorbers must be considerably smaller than previous estimates. We investigate the production of abnormal absorption profiles by partial coverage and conclude that the lack of any known anomalous profiles in observed systems, whilst constraining, cannot on its own rule out patchy MgII absorbers. Read More

2007Jun
Affiliations: 1MPA-Garching, 2MPA-Garching, 3JHU, 4IAP-Paris, 5MPE, 6Porto, 7JHU, 8MPIA
Category: Astrophysics

[Abridged] We investigate trends between the recent star formation history and black hole growth in galaxy bulges in the Sloan Digital Sky Survey (SDSS). The galaxies lie at 0.01Read More

2007May
Affiliations: 1IoA Cambridge, 2MPA Garching
Category: Astrophysics

We present K-band imaging of fields around 30 strong CaII absorption line systems, at 0.7Read More

2006Nov

[abridged] Using stacked Sloan Digital Sky Survey spectra, we present the detection of [OII]3727,3730 nebular emission from galaxies hosting CaII and MgII absorption line systems. Both samples of absorbers, 345 CaII systems and 3461 MgII systems, span the redshift interval 0.4 < z < 1. Read More

2006Jul

Absorption line studies of galaxies along the line-of-sight to distant quasars allow a direct observational link between the properties of the extended gaseous disk/halo and of the star forming region of galaxies. In these proceedings we review recent work on CaII absorbers detected in the SDSS at 0.4Read More

2006Jun
Affiliations: 1MPE, Garching, 2Institute of Astronomy, Cambridge, 3ESO, Garching, 4Eotvos Lorand University, Budapest, 5MPA, Garching
Category: Astrophysics

We measure the mean halo-mass of z=0.5 MgII absorbers using the cross-correlation (over co-moving scales 0.05-13h^{-1}Mpc) between 1806 MgII quasar absorption systems and ~250,000 Luminous Red Galaxies (LRGs), both selected from the SDSS DR3. Read More

We use the average E(B-V) and ZnII column densities of a sample of z~1 CaII (3935, 3970) absorption line systems selected from the Sloan Digital Sky Survey (SDSS DR4) to show that on average, with conservative assumptions regarding metallicities and dust-to-gas ratios, they contain column densities of neutral hydrogen greater than the damped Lyman-alpha (DLA) limit. We propose that selection by CaII absorption is an effective way of identifying high column densities of neutral hydrogen, and thus large samples of DLAs at z<1.3 from the SDSS. Read More

2005May
Affiliations: 1Institute of Astronomy, Cambridge, 2Institute of Astronomy, Cambridge
Category: Astrophysics

We present a new sample of 31 CaII(H&K) 3935,3970 absorption line systems with 0.84Read More

The Sloan Digital Sky Survey (SDSS) currently provides by far the largest homogeneous sample of intermediate signal-to-noise ratio (S/N) optical spectra of galaxies and quasars. The fully automated SDSS spectroscopic reduction pipeline has provided spectra of unprecedented quality that cover the wavelength range 3800-9200A. However, in common with spectra from virtually all multi-object surveys employing fibres, there remain significant systematic residuals in many of the spectra due to the incomplete subtraction of the strong OH sky emission lines longward of 6700A. Read More

2004Apr
Affiliations: 1The 2dFGRS Team, 2The 2dFGRS Team, 3The 2dFGRS Team, 4The 2dFGRS Team, 5The 2dFGRS Team, 6The 2dFGRS Team, 7The 2dFGRS Team, 8The 2dFGRS Team, 9The 2dFGRS Team, 10The 2dFGRS Team, 11The 2dFGRS Team, 12The 2dFGRS Team, 13The 2dFGRS Team, 14The 2dFGRS Team, 15The 2dFGRS Team, 16The 2dFGRS Team, 17The 2dFGRS Team, 18The 2dFGRS Team, 19The 2dFGRS Team, 20The 2dFGRS Team, 21The 2dFGRS Team, 22The 2dFGRS Team, 23The 2dFGRS Team, 24The 2dFGRS Team, 25The 2dFGRS Team, 26The 2dFGRS Team, 27The 2dFGRS Team, 28The 2dFGRS Team, 29The 2dFGRS Team
Category: Astrophysics

It is well known that the clustering of galaxies depends on galaxy type.Such relative bias complicates the inference of cosmological parameters from galaxy redshift surveys, and is a challenge to theories of galaxy formation and evolution. In this paper we perform a joint counts-in-cells analysis on galaxies in the 2dF Galaxy Redshift Survey, classified by both colour and spectral type, eta, as early or late type galaxies. Read More