V. Tvaskis - University of Victoria

V. Tvaskis
Are you V. Tvaskis?

Claim your profile, edit publications, add additional information:

Contact Details

Name
V. Tvaskis
Affiliation
University of Victoria
City
Victoria
Country
Canada

Pubs By Year

Pub Categories

 
Nuclear Experiment (26)
 
Physics - Instrumentation and Detectors (5)
 
High Energy Physics - Experiment (5)
 
Physics - Accelerator Physics (2)
 
Nuclear Theory (2)
 
High Energy Physics - Phenomenology (2)

Publications Authored By V. Tvaskis

We have performed a novel comparison between electron-beam polarimeters based on M{\o}ller and Compton scattering. A sequence of electron-beam polarization measurements were performed at low beam currents ($<$ 5 $\mu$A) during the $Q_{\rm weak}$ experiment in Hall C at Jefferson Lab. These low current measurements were bracketed by the regular high current (180 $\mu$A) operation of the Compton polarimeter. Read More

Structure functions, as measured in lepton-nucleon scattering, have proven to be very useful in studying the quark dynamics within the nucleon. However, it is experimentally difficult to separately determine the longitudinal and transverse structure functions, and consequently there are substantially less data available for the longitudinal structure function in particular. Here we present separated structure functions for hydrogen and deuterium at low four--momentum transfer squared, Q^2< 1 GeV^2, and compare these with parton distribution parameterizations and a k_T factorization approach. Read More

We report on the highest precision yet achieved in the measurement of the polarization of a low energy, $\mathcal{O}$(1 GeV), electron beam, accomplished using a new polarimeter based on electron-photon scattering, in Hall~C at Jefferson Lab. A number of technical innovations were necessary, including a novel method for precise control of the laser polarization in a cavity and a novel diamond micro-strip detector which was able to capture most of the spectrum of scattered electrons. The data analysis technique exploited track finding, the high granularity of the detector and its large acceptance. Read More

Background: Measurements of forward exclusive meson production at different squared four-momenta of the exchanged virtual photon, $Q^2$, and at different four-momentum transfer, t, can be used to probe QCD's transition from meson-nucleon degrees of freedom at long distances to quark-gluon degrees of freedom at short scales. Ratios of separated response functions in $\pi^-$ and $\pi^+$ electroproduction are particularly informative. The ratio for transverse photons may allow this transition to be more easily observed, while the ratio for longitudinal photons provides a crucial verification of the assumed pole dominance, needed for reliable extraction of the pion form factor from electroproduction data. Read More

2014Sep
Authors: Qweak Collaboration, T. Allison, M. Anderson, D. Androic, D. S. Armstrong, A. Asaturyan, T. D. Averett, R. Averill, J. Balewski, J. Beaufait, R. S. Beminiwattha, J. Benesch, F. Benmokhtar, J. Bessuille, J. Birchall, E. Bonnell, J. Bowman, P. Brindza, D. B. Brown, R. D. Carlini, G. D. Cates, B. Cavness, G. Clark, J. C. Cornejo, S. Covrig Dusa, M. M. Dalton, C. A. Davis, D. C. Dean, W. Deconinck, J. Diefenbach, K. Dow, J. F. Dowd, J. A. Dunne, D. Dutta, W. S. Duvall, J. R. Echols, M. Elaasar, W. R. Falk, K. D. Finelli, J. M. Finn, D. Gaskell, M. T. W. Gericke, J. Grames, V. M. Gray, K. Grimm, F. Guo, J. Hansknecht, D. J. Harrison, E. Henderson, J. R. Hoskins, E. Ihloff, K. Johnston, D. Jones, M. Jones, R. Jones, M. Kargiantoulakis, J. Kelsey, N. Khan, P. M. King, E. Korkmaz, S. Kowalski, A. Kubera, J. Leacock, J. P. Leckey, A. R. Lee, J. H. Lee, L. Lee, Y. Liang, S. MacEwan, D. Mack, J. A. Magee, R. Mahurin, J. Mammei, J. W. Martin, A. McCreary, M. H. McDonald, M. J. McHugh, P. Medeiros, D. Meekins, J. Mei, R. Michaels, A. Micherdzinska, A. Mkrtchyan, H. Mkrtchyan, N. Morgan, J. Musson, K. E. Mesick, A. Narayan, L. Z. Ndukum, V. Nelyubin, Nuruzzaman, W. T. H. van Oers, A. K. Opper, S. A. Page, J. Pan, K. D. Paschke, S. K. Phillips, M. L. Pitt, M. Poelker, J. F. Rajotte, W. D. Ramsay, W. R. Roberts, J. Roche, P. W. Rose, B. Sawatzky, T. Seva, M. H. Shabestari, R. Silwal, N. Simicevic, G. R. Smith, S. Sobczynski, P. Solvignon, D. T. Spayde, B. Stokes, D. W. Storey, A. Subedi, R. Subedi, R. Suleiman, V. Tadevosyan, W. A. Tobias, V. Tvaskis, E. Urban, B. Waidyawansa, P. Wang, S. P. Wells, S. A. Wood, S. Yang, S. Zhamkochyan, R. B. Zielinski

The Jefferson Lab Q_weak experiment determined the weak charge of the proton by measuring the parity-violating elastic scattering asymmetry of longitudinally polarized electrons from an unpolarized liquid hydrogen target at small momentum transfer. A custom apparatus was designed for this experiment to meet the technical challenges presented by the smallest and most precise ${\vec{e}}$p asymmetry ever measured. Technical milestones were achieved at Jefferson Lab in target power, beam current, beam helicity reversal rate, polarimetry, detected rates, and control of helicity-correlated beam properties. Read More

2014Jun
Authors: L. Tang1, C. Chen2, T. Gogami3, D. Kawama4, Y. Han5, L. Yuan6, A. Matsumura7, Y. Okayasu8, T. Seva9, V. M. Rodriguez10, P. Baturin11, A. Acha12, P. Achenbach13, A. Ahmidouch14, I. Albayrak15, D. Androic16, A. Asaturyan17, R. Asaturyan18, O. Ates19, R. Badui20, O. K. Baker21, F. Benmokhtar22, W. Boeglin23, J. Bono24, P. Bosted25, E. Brash26, P. Carter27, R. Carlini28, A. Chiba29, M. E. Christy30, L. Cole31, M. M. Dalton32, S. Danagoulian33, A. Daniel34, R. De Leo35, V. Dharmawardane36, D. Doi37, K. Egiyan38, M. Elaasar39, R. Ent40, H. Fenker41, Y. Fujii42, M. Furic43, M. Gabrielyan44, L. Gan45, F. Garibaldi46, D. Gaskell47, A. Gasparian48, E. F. Gibson49, P. Gueye50, O. Hashimoto51, D. Honda52, T. Horn53, B. Hu54, Ed V. Hungerford55, C. Jayalath56, M. Jones57, K. Johnston58, N. Kalantarians59, H. Kanda60, M. Kaneta61, F. Kato62, S. Kato63, M. Kawai64, C. Keppel65, H. Khanal66, M. Kohl67, L. Kramer68, K. J. Lan69, Y. Li70, A. Liyanage71, W. Luo72, D. Mack73, K. Maeda74, S. Malace75, A. Margaryan76, G. Marikyan77, P. Markowitz78, T. Maruta79, N. Maruyama80, V. Maxwell81, D. J. Millener82, T. Miyoshi83, A. Mkrtchyan84, H. Mkrtchyan85, T. Motoba86, S. Nagao87, S. N. Nakamura88, A. Narayan89, C. Neville90, G. Niculescu91, M. I. Niculescu92, A. Nunez93, Nuruzzaman94, H. Nomura95, K. Nonaka96, A. Ohtani97, M. Oyamada98, N. Perez99, T. Petkovic100, J. Pochodzalla101, X. Qiu102, S. Randeniya103, B. Raue104, J. Reinhold105, R. Rivera106, J. Roche107, C. Samanta108, Y. Sato109, B. Sawatzky110, E. K. Segbefia111, D. Schott112, A. Shichijo113, N. Simicevic114, G. Smith115, Y. Song116, M. Sumihama117, V. Tadevosyan118, T. Takahashi119, N. Taniya120, K. Tsukada121, V. Tvaskis122, M. Veilleux123, W. Vulcan124, S. Wells125, F. R. Wesselmann126, S. A. Wood127, T. Yamamoto128, C. Yan129, Z. Ye130, K. Yokota131, S. Zhamkochyan132, L. Zhu133
Affiliations: 1HKS - JLab E05-115 and E01-001 - Collaborations, 2HKS - JLab E05-115 and E01-001 - Collaborations, 3HKS - JLab E05-115 and E01-001 - Collaborations, 4HKS - JLab E05-115 and E01-001 - Collaborations, 5HKS - JLab E05-115 and E01-001 - Collaborations, 6HKS - JLab E05-115 and E01-001 - Collaborations, 7HKS - JLab E05-115 and E01-001 - Collaborations, 8HKS - JLab E05-115 and E01-001 - Collaborations, 9HKS - JLab E05-115 and E01-001 - Collaborations, 10HKS - JLab E05-115 and E01-001 - Collaborations, 11HKS - JLab E05-115 and E01-001 - Collaborations, 12HKS - JLab E05-115 and E01-001 - Collaborations, 13HKS - JLab E05-115 and E01-001 - Collaborations, 14HKS - JLab E05-115 and E01-001 - Collaborations, 15HKS - JLab E05-115 and E01-001 - Collaborations, 16HKS - JLab E05-115 and E01-001 - Collaborations, 17HKS - JLab E05-115 and E01-001 - Collaborations, 18HKS - JLab E05-115 and E01-001 - Collaborations, 19HKS - JLab E05-115 and E01-001 - Collaborations, 20HKS - JLab E05-115 and E01-001 - Collaborations, 21HKS - JLab E05-115 and E01-001 - Collaborations, 22HKS - JLab E05-115 and E01-001 - Collaborations, 23HKS - JLab E05-115 and E01-001 - Collaborations, 24HKS - JLab E05-115 and E01-001 - Collaborations, 25HKS - JLab E05-115 and E01-001 - Collaborations, 26HKS - JLab E05-115 and E01-001 - Collaborations, 27HKS - JLab E05-115 and E01-001 - Collaborations, 28HKS - JLab E05-115 and E01-001 - Collaborations, 29HKS - JLab E05-115 and E01-001 - Collaborations, 30HKS - JLab E05-115 and E01-001 - Collaborations, 31HKS - JLab E05-115 and E01-001 - Collaborations, 32HKS - JLab E05-115 and E01-001 - Collaborations, 33HKS - JLab E05-115 and E01-001 - Collaborations, 34HKS - JLab E05-115 and E01-001 - Collaborations, 35HKS - JLab E05-115 and E01-001 - Collaborations, 36HKS - JLab E05-115 and E01-001 - Collaborations, 37HKS - JLab E05-115 and E01-001 - Collaborations, 38HKS - JLab E05-115 and E01-001 - Collaborations, 39HKS - JLab E05-115 and E01-001 - Collaborations, 40HKS - JLab E05-115 and E01-001 - Collaborations, 41HKS - JLab E05-115 and E01-001 - Collaborations, 42HKS - JLab E05-115 and E01-001 - Collaborations, 43HKS - JLab E05-115 and E01-001 - Collaborations, 44HKS - JLab E05-115 and E01-001 - Collaborations, 45HKS - JLab E05-115 and E01-001 - Collaborations, 46HKS - JLab E05-115 and E01-001 - Collaborations, 47HKS - JLab E05-115 and E01-001 - Collaborations, 48HKS - JLab E05-115 and E01-001 - Collaborations, 49HKS - JLab E05-115 and E01-001 - Collaborations, 50HKS - JLab E05-115 and E01-001 - Collaborations, 51HKS - JLab E05-115 and E01-001 - Collaborations, 52HKS - JLab E05-115 and E01-001 - Collaborations, 53HKS - JLab E05-115 and E01-001 - Collaborations, 54HKS - JLab E05-115 and E01-001 - Collaborations, 55HKS - JLab E05-115 and E01-001 - Collaborations, 56HKS - JLab E05-115 and E01-001 - Collaborations, 57HKS - JLab E05-115 and E01-001 - Collaborations, 58HKS - JLab E05-115 and E01-001 - Collaborations, 59HKS - JLab E05-115 and E01-001 - Collaborations, 60HKS - JLab E05-115 and E01-001 - Collaborations, 61HKS - JLab E05-115 and E01-001 - Collaborations, 62HKS - JLab E05-115 and E01-001 - Collaborations, 63HKS - JLab E05-115 and E01-001 - Collaborations, 64HKS - JLab E05-115 and E01-001 - Collaborations, 65HKS - JLab E05-115 and E01-001 - Collaborations, 66HKS - JLab E05-115 and E01-001 - Collaborations, 67HKS - JLab E05-115 and E01-001 - Collaborations, 68HKS - JLab E05-115 and E01-001 - Collaborations, 69HKS - JLab E05-115 and E01-001 - Collaborations, 70HKS - JLab E05-115 and E01-001 - Collaborations, 71HKS - JLab E05-115 and E01-001 - Collaborations, 72HKS - JLab E05-115 and E01-001 - Collaborations, 73HKS - JLab E05-115 and E01-001 - Collaborations, 74HKS - JLab E05-115 and E01-001 - Collaborations, 75HKS - JLab E05-115 and E01-001 - Collaborations, 76HKS - JLab E05-115 and E01-001 - Collaborations, 77HKS - JLab E05-115 and E01-001 - Collaborations, 78HKS - JLab E05-115 and E01-001 - Collaborations, 79HKS - JLab E05-115 and E01-001 - Collaborations, 80HKS - JLab E05-115 and E01-001 - Collaborations, 81HKS - JLab E05-115 and E01-001 - Collaborations, 82HKS - JLab E05-115 and E01-001 - Collaborations, 83HKS - JLab E05-115 and E01-001 - Collaborations, 84HKS - JLab E05-115 and E01-001 - Collaborations, 85HKS - JLab E05-115 and E01-001 - Collaborations, 86HKS - JLab E05-115 and E01-001 - Collaborations, 87HKS - JLab E05-115 and E01-001 - Collaborations, 88HKS - JLab E05-115 and E01-001 - Collaborations, 89HKS - JLab E05-115 and E01-001 - Collaborations, 90HKS - JLab E05-115 and E01-001 - Collaborations, 91HKS - JLab E05-115 and E01-001 - Collaborations, 92HKS - JLab E05-115 and E01-001 - Collaborations, 93HKS - JLab E05-115 and E01-001 - Collaborations, 94HKS - JLab E05-115 and E01-001 - Collaborations, 95HKS - JLab E05-115 and E01-001 - Collaborations, 96HKS - JLab E05-115 and E01-001 - Collaborations, 97HKS - JLab E05-115 and E01-001 - Collaborations, 98HKS - JLab E05-115 and E01-001 - Collaborations, 99HKS - JLab E05-115 and E01-001 - Collaborations, 100HKS - JLab E05-115 and E01-001 - Collaborations, 101HKS - JLab E05-115 and E01-001 - Collaborations, 102HKS - JLab E05-115 and E01-001 - Collaborations, 103HKS - JLab E05-115 and E01-001 - Collaborations, 104HKS - JLab E05-115 and E01-001 - Collaborations, 105HKS - JLab E05-115 and E01-001 - Collaborations, 106HKS - JLab E05-115 and E01-001 - Collaborations, 107HKS - JLab E05-115 and E01-001 - Collaborations, 108HKS - JLab E05-115 and E01-001 - Collaborations, 109HKS - JLab E05-115 and E01-001 - Collaborations, 110HKS - JLab E05-115 and E01-001 - Collaborations, 111HKS - JLab E05-115 and E01-001 - Collaborations, 112HKS - JLab E05-115 and E01-001 - Collaborations, 113HKS - JLab E05-115 and E01-001 - Collaborations, 114HKS - JLab E05-115 and E01-001 - Collaborations, 115HKS - JLab E05-115 and E01-001 - Collaborations, 116HKS - JLab E05-115 and E01-001 - Collaborations, 117HKS - JLab E05-115 and E01-001 - Collaborations, 118HKS - JLab E05-115 and E01-001 - Collaborations, 119HKS - JLab E05-115 and E01-001 - Collaborations, 120HKS - JLab E05-115 and E01-001 - Collaborations, 121HKS - JLab E05-115 and E01-001 - Collaborations, 122HKS - JLab E05-115 and E01-001 - Collaborations, 123HKS - JLab E05-115 and E01-001 - Collaborations, 124HKS - JLab E05-115 and E01-001 - Collaborations, 125HKS - JLab E05-115 and E01-001 - Collaborations, 126HKS - JLab E05-115 and E01-001 - Collaborations, 127HKS - JLab E05-115 and E01-001 - Collaborations, 128HKS - JLab E05-115 and E01-001 - Collaborations, 129HKS - JLab E05-115 and E01-001 - Collaborations, 130HKS - JLab E05-115 and E01-001 - Collaborations, 131HKS - JLab E05-115 and E01-001 - Collaborations, 132HKS - JLab E05-115 and E01-001 - Collaborations, 133HKS - JLab E05-115 and E01-001 - Collaborations

Since the pioneering experiment, E89-009 studying hypernuclear spectroscopy using the $(e,e^{\prime}K^+)$ reaction was completed, two additional experiments, E01-011 and E05-115, were performed at Jefferson Lab. These later experiments used a modified experimental design, the "tilt method", to dramatically suppress the large electromagnetic background, and allowed for a substantial increase in luminosity. Additionally, a new kaon spectrometer, HKS (E01-011), a new electron spectrometer, HES, and a new splitting magnet were added to produce precision, high-resolution hypernuclear spectroscopy. Read More

2014Apr
Affiliations: 1The Jefferson Lab Fpi Collaboration, 2The Jefferson Lab Fpi Collaboration, 3The Jefferson Lab Fpi Collaboration, 4The Jefferson Lab Fpi Collaboration, 5The Jefferson Lab Fpi Collaboration, 6The Jefferson Lab Fpi Collaboration, 7The Jefferson Lab Fpi Collaboration, 8The Jefferson Lab Fpi Collaboration, 9The Jefferson Lab Fpi Collaboration, 10The Jefferson Lab Fpi Collaboration, 11The Jefferson Lab Fpi Collaboration, 12The Jefferson Lab Fpi Collaboration, 13The Jefferson Lab Fpi Collaboration, 14The Jefferson Lab Fpi Collaboration, 15The Jefferson Lab Fpi Collaboration, 16The Jefferson Lab Fpi Collaboration, 17The Jefferson Lab Fpi Collaboration, 18The Jefferson Lab Fpi Collaboration, 19The Jefferson Lab Fpi Collaboration, 20The Jefferson Lab Fpi Collaboration, 21The Jefferson Lab Fpi Collaboration, 22The Jefferson Lab Fpi Collaboration, 23The Jefferson Lab Fpi Collaboration, 24The Jefferson Lab Fpi Collaboration, 25The Jefferson Lab Fpi Collaboration, 26The Jefferson Lab Fpi Collaboration, 27The Jefferson Lab Fpi Collaboration, 28The Jefferson Lab Fpi Collaboration, 29The Jefferson Lab Fpi Collaboration, 30The Jefferson Lab Fpi Collaboration, 31The Jefferson Lab Fpi Collaboration, 32The Jefferson Lab Fpi Collaboration, 33The Jefferson Lab Fpi Collaboration, 34The Jefferson Lab Fpi Collaboration, 35The Jefferson Lab Fpi Collaboration, 36The Jefferson Lab Fpi Collaboration, 37The Jefferson Lab Fpi Collaboration, 38The Jefferson Lab Fpi Collaboration, 39The Jefferson Lab Fpi Collaboration, 40The Jefferson Lab Fpi Collaboration, 41The Jefferson Lab Fpi Collaboration, 42The Jefferson Lab Fpi Collaboration, 43The Jefferson Lab Fpi Collaboration, 44The Jefferson Lab Fpi Collaboration, 45The Jefferson Lab Fpi Collaboration, 46The Jefferson Lab Fpi Collaboration, 47The Jefferson Lab Fpi Collaboration, 48The Jefferson Lab Fpi Collaboration, 49The Jefferson Lab Fpi Collaboration, 50The Jefferson Lab Fpi Collaboration, 51The Jefferson Lab Fpi Collaboration, 52The Jefferson Lab Fpi Collaboration, 53The Jefferson Lab Fpi Collaboration, 54The Jefferson Lab Fpi Collaboration, 55The Jefferson Lab Fpi Collaboration, 56The Jefferson Lab Fpi Collaboration, 57The Jefferson Lab Fpi Collaboration, 58The Jefferson Lab Fpi Collaboration, 59The Jefferson Lab Fpi Collaboration, 60The Jefferson Lab Fpi Collaboration, 61The Jefferson Lab Fpi Collaboration, 62The Jefferson Lab Fpi Collaboration, 63The Jefferson Lab Fpi Collaboration, 64The Jefferson Lab Fpi Collaboration, 65The Jefferson Lab Fpi Collaboration, 66The Jefferson Lab Fpi Collaboration, 67The Jefferson Lab Fpi Collaboration, 68The Jefferson Lab Fpi Collaboration, 69The Jefferson Lab Fpi Collaboration, 70The Jefferson Lab Fpi Collaboration, 71The Jefferson Lab Fpi Collaboration, 72The Jefferson Lab Fpi Collaboration, 73The Jefferson Lab Fpi Collaboration, 74The Jefferson Lab Fpi Collaboration, 75The Jefferson Lab Fpi Collaboration, 76The Jefferson Lab Fpi Collaboration, 77The Jefferson Lab Fpi Collaboration, 78The Jefferson Lab Fpi Collaboration, 79The Jefferson Lab Fpi Collaboration, 80The Jefferson Lab Fpi Collaboration, 81The Jefferson Lab Fpi Collaboration, 82The Jefferson Lab Fpi Collaboration, 83The Jefferson Lab Fpi Collaboration, 84The Jefferson Lab Fpi Collaboration, 85The Jefferson Lab Fpi Collaboration, 86The Jefferson Lab Fpi Collaboration, 87The Jefferson Lab Fpi Collaboration, 88The Jefferson Lab Fpi Collaboration

The study of exclusive $\pi^{\pm}$ electroproduction on the nucleon, including separation of the various structure functions, is of interest for a number of reasons. The ratio $R_L=\sigma_L^{\pi^-}/\sigma_L^{\pi^+}$ is sensitive to isoscalar contamination to the dominant isovector pion exchange amplitude, which is the basis for the determination of the charged pion form factor from electroproduction data. A change in the value of $R_T=\sigma_T^{\pi^-}/\sigma_T^{\pi^+}$ from unity at small $-t$, to 1/4 at large $-t$, would suggest a transition from coupling to a (virtual) pion to coupling to individual quarks. Read More

2014Feb
Authors: S. Tkachenko1, N. Baillie2, S. E. Kuhn3, J. Zhang4, J. Arrington5, P. Bosted6, S. Bültmann7, M. E. Christy8, D. Dutta9, R. Ent10, H. Fenker11, K. A. Griffioen12, M. Ispiryan13, N. Kalantarians14, C. E. Keppel15, W. Melnitchouk16, V. Tvaskis17, K. P. Adhikari18, M. Aghasyan19, M. J. Amaryan20, S. Anefalos Pereira21, H. Avakian22, J. Ball23, N. A. Baltzell24, M. Battaglieri25, I. Bedlinskiy26, A. S. Biselli27, W. J. Briscoe28, W. K. Brooks29, V. D. Burkert30, D. S. Carman31, A. Celentano32, S. Chandavar33, G. Charles34, P. L. Cole35, M. Contalbrigo36, O. Cortes37, V. Crede38, A. D'Angelo39, N. Dashyan40, R. De Vita41, E. De Sanctis42, A. Deur43, C. Djalali44, G. E. Dodge45, D. Doughty46, R. Dupre47, H. Egiyan48, A. El Alaoui49, L. El Fassi50, L. Elouadrhiri51, P. Eugenio52, G. Fedotov53, J. A. Fleming54, B. Garillon55, N. Gevorgyan56, Y. Ghandilyan57, G. P. Gilfoyle58, K. L. Giovanetti59, F. X. Girod60, J. T. Goetz61, E. Golovatch62, R. W. Gothe63, M. Guidal64, L. Guo65, K. Hafidi66, H. Hakobyan67, C. Hanretty68, N. Harrison69, M. Hattawy70, K. Hicks71, D. Ho72, M. Holtrop73, C . E. Hyde74, Y. Ilieva75, D. G. Ireland76, B. S. Ishkhanov77, H. S. Jo78, D. Keller79, M. Khandaker80, A. Kim81, W. Kim82, P. M. King83, A. Klein84, F. J. Klein85, S. Koirala86, V. Kubarovsky87, S. V. Kuleshov88, P. Lenisa89, S. Lewis90, K. Livingston91, H. Lu92, M. MacCormick93, I. J. D. MacGregor94, N. Markov95, M. Mayer96, B. McKinnon97, T. Mineeva98, M. Mirazita99, V. Mokeev100, R. A. Montgomery101, H. Moutarde102, C. Munoz Camacho103, P. Nadel-Turonski104, S. Niccolai105, G. Niculescu106, I. Niculescu107, M. Osipenko108, L. L. Pappalardo109, R. Paremuzyan110, K. Park111, E. Pasyuk112, J. J. Phillips113, S. Pisano114, O. Pogorelko115, S. Pozdniakov116, J. W. Price117, S. Procureur118, D. Protopopescu119, A. J . R. Puckett120, D. Rimal121, M. Ripani122, A. Rizzo123, G. Rosner124, P. Rossi125, P. Roy126, F. Sabatié127, D. Schott128, R. A. Schumacher129, E. Seder130, I. Senderovich131, Y. G. Sharabian132, A. Simonyan133, G. D. Smith134, D. I. Sober135, D. Sokhan136, S. Stepanyan137, S. S. Stepanyan138, S. Strauch139, W. Tang140, M. Ungaro141, A. V. Vlassov142, H. Voskanyan143, E. Voutier144, N. K. Walford145, D. Watts146, X. Wei147, L. B. Weinstein148, M. H. Wood149, L. Zana150, I. Zonta151
Affiliations: 1The CLAS collaboration, 2The CLAS collaboration, 3The CLAS collaboration, 4The CLAS collaboration, 5The CLAS collaboration, 6The CLAS collaboration, 7The CLAS collaboration, 8The CLAS collaboration, 9The CLAS collaboration, 10The CLAS collaboration, 11The CLAS collaboration, 12The CLAS collaboration, 13The CLAS collaboration, 14The CLAS collaboration, 15The CLAS collaboration, 16The CLAS collaboration, 17The CLAS collaboration, 18The CLAS collaboration, 19The CLAS collaboration, 20The CLAS collaboration, 21The CLAS collaboration, 22The CLAS collaboration, 23The CLAS collaboration, 24The CLAS collaboration, 25The CLAS collaboration, 26The CLAS collaboration, 27The CLAS collaboration, 28The CLAS collaboration, 29The CLAS collaboration, 30The CLAS collaboration, 31The CLAS collaboration, 32The CLAS collaboration, 33The CLAS collaboration, 34The CLAS collaboration, 35The CLAS collaboration, 36The CLAS collaboration, 37The CLAS collaboration, 38The CLAS collaboration, 39The CLAS collaboration, 40The CLAS collaboration, 41The CLAS collaboration, 42The CLAS collaboration, 43The CLAS collaboration, 44The CLAS collaboration, 45The CLAS collaboration, 46The CLAS collaboration, 47The CLAS collaboration, 48The CLAS collaboration, 49The CLAS collaboration, 50The CLAS collaboration, 51The CLAS collaboration, 52The CLAS collaboration, 53The CLAS collaboration, 54The CLAS collaboration, 55The CLAS collaboration, 56The CLAS collaboration, 57The CLAS collaboration, 58The CLAS collaboration, 59The CLAS collaboration, 60The CLAS collaboration, 61The CLAS collaboration, 62The CLAS collaboration, 63The CLAS collaboration, 64The CLAS collaboration, 65The CLAS collaboration, 66The CLAS collaboration, 67The CLAS collaboration, 68The CLAS collaboration, 69The CLAS collaboration, 70The CLAS collaboration, 71The CLAS collaboration, 72The CLAS collaboration, 73The CLAS collaboration, 74The CLAS collaboration, 75The CLAS collaboration, 76The CLAS collaboration, 77The CLAS collaboration, 78The CLAS collaboration, 79The CLAS collaboration, 80The CLAS collaboration, 81The CLAS collaboration, 82The CLAS collaboration, 83The CLAS collaboration, 84The CLAS collaboration, 85The CLAS collaboration, 86The CLAS collaboration, 87The CLAS collaboration, 88The CLAS collaboration, 89The CLAS collaboration, 90The CLAS collaboration, 91The CLAS collaboration, 92The CLAS collaboration, 93The CLAS collaboration, 94The CLAS collaboration, 95The CLAS collaboration, 96The CLAS collaboration, 97The CLAS collaboration, 98The CLAS collaboration, 99The CLAS collaboration, 100The CLAS collaboration, 101The CLAS collaboration, 102The CLAS collaboration, 103The CLAS collaboration, 104The CLAS collaboration, 105The CLAS collaboration, 106The CLAS collaboration, 107The CLAS collaboration, 108The CLAS collaboration, 109The CLAS collaboration, 110The CLAS collaboration, 111The CLAS collaboration, 112The CLAS collaboration, 113The CLAS collaboration, 114The CLAS collaboration, 115The CLAS collaboration, 116The CLAS collaboration, 117The CLAS collaboration, 118The CLAS collaboration, 119The CLAS collaboration, 120The CLAS collaboration, 121The CLAS collaboration, 122The CLAS collaboration, 123The CLAS collaboration, 124The CLAS collaboration, 125The CLAS collaboration, 126The CLAS collaboration, 127The CLAS collaboration, 128The CLAS collaboration, 129The CLAS collaboration, 130The CLAS collaboration, 131The CLAS collaboration, 132The CLAS collaboration, 133The CLAS collaboration, 134The CLAS collaboration, 135The CLAS collaboration, 136The CLAS collaboration, 137The CLAS collaboration, 138The CLAS collaboration, 139The CLAS collaboration, 140The CLAS collaboration, 141The CLAS collaboration, 142The CLAS collaboration, 143The CLAS collaboration, 144The CLAS collaboration, 145The CLAS collaboration, 146The CLAS collaboration, 147The CLAS collaboration, 148The CLAS collaboration, 149The CLAS collaboration, 150The CLAS collaboration, 151The CLAS collaboration

Much less is known about neutron structure than that of the proton due to the absence of free neutron targets. Neutron information is usually extracted from data on nuclear targets such as deuterium, requiring corrections for nuclear binding and nucleon off-shell effects. These corrections are model dependent and have significant uncertainties, especially for large values of the Bjorken scaling variable x. Read More

A subset of results from the recently completed Jefferson Lab Qweak experiment are reported. This experiment, sensitive to physics beyond the Standard Model, exploits the small parity-violating asymmetry in elastic ep scattering to provide the first determination of the protons weak charge Qweak(p). The experiment employed a 180 uA longitudinally polarized 1. Read More

The Qweak experiment has measured the parity-violating asymmetry in polarized e-p elastic scattering at Q^2 = 0.025(GeV/c)^2, employing 145 microamps of 89% longitudinally polarized electrons on a 34.4cm long liquid hydrogen target at Jefferson Lab. Read More

2012Jul
Affiliations: 1HKS, 2HKS, 3HKS, 4HKS, 5HKS, 6HKS, 7HKS, 8HKS, 9HKS, 10HKS, 11HKS, 12HKS, 13HKS, 14HKS, 15HKS, 16HKS, 17HKS, 18HKS, 19HKS, 20HKS, 21HKS, 22HKS, 23HKS, 24HKS, 25HKS, 26HKS, 27HKS, 28HKS, 29HKS, 30HKS, 31HKS, 32HKS, 33HKS, 34HKS, 35HKS, 36HKS, 37HKS, 38HKS, 39HKS, 40HKS, 41HKS, 42HKS, 43HKS, 44HKS, 45HKS, 46HKS, 47HKS, 48HKS, 49HKS, 50HKS, 51HKS, 52HKS, 53HKS, 54HKS, 55HKS, 56HKS, 57HKS, 58HKS, 59HKS, 60HKS, 61HKS, 62HKS, 63HKS, 64HKS, 65HKS, 66HKS, 67HKS, 68HKS, 69HKS, 70HKS, 71HKS, 72HKS, 73HKS, 74HKS, 75HKS, 76HKS, 77HKS, 78HKS, 79HKS, 80HKS, 81HKS, 82HKS, 83HKS, 84HKS, 85HKS, 86HKS, 87HKS, 88HKS, 89HKS, 90HKS, 91HKS, 92HKS, 93HKS

An experiment with a newly developed high-resolution kaon spectrometer (HKS) and a scattered electron spectrometer with a novel configuration was performed in Hall C at Jefferson Lab (JLab). The ground state of a neutron-rich hypernucleus, He 7 Lambda, was observed for the first time with the (e,e'K+) reaction with an energy resolution of ~0.6 MeV. Read More

The electromagnetic calorimeters of the various magnetic spectrometers in Hall C at Jefferson Lab are presented. For the existing HMS and SOS spectrometers design considerations, relevant construction information, and comparisons of simulated and experimental results are included. The energy resolution of the HMS and SOS calorimeters is better than $\sigma/E \sim 6%/\sqrt E $, and pion/electron ($\pi/e$) separation of about 100:1 has been achieved in energy range 1 -- 5 GeV. Read More

2011Oct
Authors: N. Baillie, S. Tkachenko, J. Zhang, P. Bosted, S. Bultmann, M. E. Christy, H. Fenker, K. A. Griffioen, C. E. Keppel, S. E. Kuhn, W. Melnitchouk, V. Tvaskis, K. P. Adhikari, D. Adikaram, M. Aghasyan, M. J. Amaryan, M. Anghinolfini, J. Arrington, H. Avakian, H. Baghdasaryan, M. Battaglieri, A. S. Biselli, 5 D. Branford, W. J. Briscoe, W. K. Brooks, V. D. Burkert, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, P. L. Cole, M. Contalbrigo, V. Crede, A. D'Angelo, A. Daniel, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, B. Dey, C. Djalali, G. Dodge, J. Domingo, D. Doughty, R. Dupre, D. Dutta, R. Ent, H. Egiyan, A. El Alaoui, L. El Fassi, L. Elouadrhiri, P. Eugenio, G. Fedotov, S. Fegan, A. Fradi, M. Y. Gabrielyan, N. Gevorgyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, W. Gohn, E. Golovatch, R. W. Gothe, L. Graham, B. Guegan, M. Guidal, N. Guler, L. Guo, K. Hafidi, D. Heddle, K. Hicks, M. Holtrop, E. Hungerford, C. E. Hyde, Y. Ilieva, D. G. Ireland, M. Ispiryan, E. L. Isupov, S. S. Jawalkar, H. S. Jo, N. Kalantarians, M. Khandaker, P. Khetarpal, A. Kim, W. Kim, P. M. King, A. Klein, F. J. Klein, A. Klimenko, V. Kubarovsky, S. V. Kuleshov, N. D. Kvaltine, K. Livingston, H. Y. Lu, I . J . D. MacGregor, Y. Mao, N. Markov, B. McKinnon, T. Mineeva, B. Morrison, H. Moutarde, E. Munevar, P. Nadel-Turonski, A. Ni, S. Niccolai, I. Niculescu, G. Niculescu, M. Osipenko, A. I. Ostrovidov, L. Pappalardo, K. Park, S. Park, E. Pasyuk, S. Anefalos Pereira, S. Pisano, S. Pozdniakov, J. W. Price, S. Procureur, Y. Prok, D. Protopopescu, B. A. Raue, G. Ricco, D. Rimal, M. Ripani, G. Rosner, P. Rossi, F. Sabatie, M. S. Saini, C. Salgado, D. Schott, R. A. Schumacher, E. Seder, Y. G. Sharabian, D. I. Sober, D. Sokhan, S. Stepanyan, S. S. Stepanyan, P. Stoler, S. Strauch, M. Taiuti, W. Tang, M. Ungaro, M. F. Vineyard, E. Voutier, D. P. Watts, L. B. Weinstein, D. P. Weygand, M. H. Wood, L. Zana, B. Zhao

We report on the first measurement of the F2 structure function of the neutron from semi-inclusive scattering of electrons from deuterium, with low-momentum protons detected in the backward hemisphere. Restricting the momentum of the spectator protons to < 100 MeV and their angles to < 100 degrees relative to the momentum transfer allows an interpretation of the process in terms of scattering from nearly on-shell neutrons. The F2n data collected cover the nucleon resonance and deep-inelastic regions over a wide range of Bjorken x for 0. Read More

2011Jun
Authors: T2K Collaboration, N. Abgrall1, H. Aihara2, Y. Ajima3, J. B. Albert4, D. Allan5, P. -A. Amaudruz6, C. Andreopoulos7, B. Andrieu8, M. D. Anerella9, C. Angelsen10, S. Aoki11, O. Araoka12, J. Argyriades13, A. Ariga14, T. Ariga15, S. Assylbekov16, J. P. A. M. de André17, D. Autiero18, A. Badertscher19, O. Ballester20, M. Barbi21, G. J. Barker22, P. Baron23, G. Barr24, L. Bartoszek25, M. Batkiewicz26, F. Bay27, S. Bentham28, V. Berardi29, B. E. Berger30, H. Berns31, I. Bertram32, M. Besnier33, J. Beucher34, D. Beznosko35, S. Bhadra36, P. Birney37, D. Bishop38, E. Blackmore39, F. d. M. Blaszczyk40, J. Blocki41, A. Blondel42, A. Bodek43, C. Bojechko44, J. Bouchez45, T. Boussuge46, S. B. Boyd47, M. Boyer48, N. Braam49, R. Bradford50, A. Bravar51, K. Briggs52, J. D. Brinson53, C. Bronner54, D. G. Brook-Roberge55, M. Bryant56, N. Buchanan57, H. Budd58, M. Cadabeschi59, R. G. Calland60, D. Calvet61, J. Caravaca Rodríguez62, J. Carroll63, S. L. Cartwright64, A. Carver65, R. Castillo66, M. G. Catanesi67, C. Cavata68, A. Cazes69, A. Cervera70, J. P. Charrier71, C. Chavez72, S. Choi73, S. Chollet74, G. Christodoulou75, P. Colas76, J. Coleman77, W. Coleman78, G. Collazuol79, K. Connolly80, P. Cooke81, A. Curioni82, A. Dabrowska83, I. Danko84, R. Das85, G. S. Davies86, S. Davis87, M. Day88, X. De La Broise89, P. de Perio90, G. De Rosa91, T. Dealtry92, A. Debraine93, E. Delagnes94, A. Delbart95, C. Densham96, F. Di Lodovico97, S. Di Luise98, P. Dinh Tran99, J. Dobson100, J. Doornbos101, U. Dore102, O. Drapier103, F. Druillole104, F. Dufour105, J. Dumarchez106, T. Durkin107, S. Dytman108, M. Dziewiecki109, M. Dziomba110, B. Ellison111, S. Emery112, A. Ereditato113, J. E. Escallier114, L. Escudero115, L. S. Esposito116, W. Faszer117, M. Fechner118, A. Ferrero119, A. Finch120, C. Fisher121, M. Fitton122, R. Flight123, D. Forbush124, E. Frank125, K. Fransham126, Y. Fujii127, Y. Fukuda128, M. Gallop129, V. Galymov130, G. L. Ganetis131, F. C. Gannaway132, A. Gaudin133, J. Gaweda134, A. Gendotti135, M. George136, S. Giffin137, C. Giganti138, K. Gilje139, I. Giomataris140, J. Giraud141, A. K. Ghosh142, T. Golan143, M. Goldhaber144, J. J. Gomez-Cadenas145, S. Gomi146, M. Gonin147, M. Goyette148, A. Grant149, N. Grant150, F. Grañena151, S. Greenwood152, P. Gumplinger153, P. Guzowski154, M. D. Haigh155, K. Hamano156, C. Hansen157, T. Hara158, P. F. Harrison159, B. Hartfiel160, M. Hartz161, T. Haruyama162, R. Hasanen163, T. Hasegawa164, N. C. Hastings165, S. Hastings166, A. Hatzikoutelis167, K. Hayashi168, Y. Hayato169, T. D. J. Haycock170, C. Hearty171, R. L. Helmer172, R. Henderson173, S. Herlant174, N. Higashi175, J. Hignight176, K. Hiraide177, E. Hirose178, J. Holeczek179, N. Honkanen180, S. Horikawa181, A. Hyndman182, A. K. Ichikawa183, K. Ieki184, M. Ieva185, M. Iida186, M. Ikeda187, J. Ilic188, J. Imber189, T. Ishida190, C. Ishihara191, T. Ishii192, S. J. Ives193, M. Iwasaki194, K. Iyogi195, A. Izmaylov196, B. Jamieson197, R. A. Johnson198, K. K. Joo199, G. Jover-Manas200, C. K. Jung201, H. Kaji202, T. Kajita203, H. Kakuno204, J. Kameda205, K. Kaneyuki206, D. Karlen207, K. Kasami208, V. Kasey209, I. Kato210, H. Kawamuko211, E. Kearns212, L. Kellet213, M. Khabibullin214, M. Khaleeq215, N. Khan216, A. Khotjantsev217, D. Kielczewska218, T. Kikawa219, J. Y. Kim220, S. -B. Kim221, N. Kimura222, B. Kirby223, J. Kisiel224, P. Kitching225, T. Kobayashi226, G. Kogan227, S. Koike228, T. Komorowski229, A. Konaka230, L. L. Kormos231, A. Korzenev232, K. Koseki233, Y. Koshio234, Y. Kouzuma235, K. Kowalik236, V. Kravtsov237, I. Kreslo238, W. Kropp239, H. Kubo240, J. Kubota241, Y. Kudenko242, N. Kulkarni243, L. Kurchaninov244, Y. Kurimoto245, R. Kurjata246, Y. Kurosawa247, T. Kutter248, J. Lagoda249, K. Laihem250, R. Langstaff251, M. Laveder252, T. B. Lawson253, P. T. Le254, A. Le Coguie255, M. Le Ross256, K. P. Lee257, M. Lenckowski258, C. Licciardi259, I. T. Lim260, T. Lindner261, R. P. Litchfield262, A. Longhin263, G. D. Lopez264, P. Lu265, L. Ludovici266, T. Lux267, M. Macaire268, L. Magaletti269, K. Mahn270, Y. Makida271, C. J. Malafis272, M. Malek273, S. Manly274, A. Marchionni275, C. Mark276, A. D. Marino277, A. J. Marone278, J. Marteau279, J. F. Martin280, T. Maruyama281, T. Maryon282, J. Marzec283, P. Masliah284, E. L. Mathie285, C. Matsumura286, K. Matsuoka287, V. Matveev288, K. Mavrokoridis289, E. Mazzucato290, N. McCauley291, K. S. McFarland292, C. McGrew293, T. McLachlan294, I. Mercer295, M. Messina296, W. Metcalf297, C. Metelko298, M. Mezzetto299, P. Mijakowski300, C. A. Miller301, A. Minamino302, O. Mineev303, S. Mine304, R. E. Minvielle305, G. Mituka306, M. Miura307, K. Mizouchi308, J. -P. Mols309, L. Monfregola310, E. Monmarthe311, F. Moreau312, B. Morgan313, S. Moriyama314, D. Morris315, A. Muir316, A. Murakami317, J. F. Muratore318, M. Murdoch319, S. Murphy320, J. Myslik321, G. Nagashima322, T. Nakadaira323, M. Nakahata324, T. Nakamoto325, K. Nakamura326, S. Nakayama327, T. Nakaya328, D. Naples329, B. Nelson330, T. C. Nicholls331, K. Nishikawa332, H. Nishino333, K. Nitta334, F. Nizery335, J. A. Nowak336, M. Noy337, Y. Obayashi338, T. Ogitsu339, H. Ohhata340, T. Okamura341, K. Okumura342, T. Okusawa343, C. Ohlmann344, K. Olchanski345, R. Openshaw346, S. M. Oser347, M. Otani348, R. A. Owen349, Y. Oyama350, T. Ozaki351, M. Y. Pac352, V. Palladino353, V. Paolone354, P. Paul355, D. Payne356, G. F. Pearce357, C. Pearson358, J. D. Perkin359, M. Pfleger360, F. Pierre361, D. Pierrepont362, P. Plonski363, P. Poffenberger364, E. Poplawska365, B. Popov366, M. Posiadala367, J. -M. Poutissou368, R. Poutissou369, R. Preece370, P. Przewlocki371, W. Qian372, J. L. Raaf373, E. Radicioni374, K. Ramos375, P. Ratoff376, T. M. Raufer377, M. Ravonel378, M. Raymond379, F. Retiere380, D. Richards381, J. -L. Ritou382, A. Robert383, P. A. Rodrigues384, E. Rondio385, M. Roney386, M. Rooney387, D. Ross388, B. Rossi389, S. Roth390, A. Rubbia391, D. Ruterbories392, R. Sacco393, S. Sadler394, K. Sakashita395, F. Sanchez396, A. Sarrat397, K. Sasaki398, P. Schaack399, J. Schmidt400, K. Scholberg401, J. Schwehr402, M. Scott403, D. I. Scully404, Y. Seiya405, T. Sekiguchi406, H. Sekiya407, G. Sheffer408, M. Shibata409, Y. Shimizu410, M. Shiozawa411, S. Short412, M. Siyad413, D. Smith414, R. J. Smith415, M. Smy416, J. Sobczyk417, H. Sobel418, S. Sooriyakumaran419, M. Sorel420, J. Spitz421, A. Stahl422, P. Stamoulis423, O. Star424, J. Statter425, L. Stawnyczy426, J. Steinmann427, J. Steffens428, B. Still429, M. Stodulski430, J. Stone431, C. Strabel432, T. Strauss433, R. Sulej434, P. Sutcliffe435, A. Suzuki436, K. Suzuki437, S. Suzuki438, S. Y. Suzuki439, Y. Suzuki440, Y. Suzuki441, J. Swierblewski442, T. Szeglowski443, M. Szeptycka444, R. Tacik445, M. Tada446, A. S. Tadepalli447, M. Taguchi448, S. Takahashi449, A. Takeda450, Y. Takenaga451, Y. Takeuchi452, H. A. Tanaka453, K. Tanaka454, M. Tanaka455, M. M. Tanaka456, N. Tanimoto457, K. Tashiro458, I. J. Taylor459, A. Terashima460, D. Terhorst461, R. Terri462, L. F. Thompson463, A. Thorley464, M. Thorpe465, W. Toki466, T. Tomaru467, Y. Totsuka468, C. Touramanis469, T. Tsukamoto470, V. Tvaskis471, M. Tzanov472, Y. Uchida473, K. Ueno474, M. Usseglio475, A. Vacheret476, M. Vagins477, J. F. Van Schalkwyk478, J. -C. Vanel479, G. Vasseur480, O. Veledar481, P. Vincent482, T. Wachala483, A. V. Waldron484, C. W. Walter485, P. J. Wanderer486, M. A. Ward487, G. P. Ward488, D. Wark489, D. Warner490, M. O. Wascko491, A. Weber492, R. Wendell493, J. Wendland494, N. West495, L. H. Whitehead496, G. Wikström497, R. J. Wilkes498, M. J. Wilking499, Z. Williamson500, J. R. Wilson501, R. J. Wilson502, K. Wong503, T. Wongjirad504, S. Yamada505, Y. Yamada506, A. Yamamoto507, K. Yamamoto508, Y. Yamanoi509, H. Yamaoka510, C. Yanagisawa511, T. Yano512, S. Yen513, N. Yershov514, M. Yokoyama515, A. Zalewska516, J. Zalipska517, K. Zaremba518, M. Ziembicki519, E. D. Zimmerman520, M. Zito521, J. Zmuda522
Affiliations: 1University of Geneva, 2University of Tokyo, 3High Energy Accelerator Research Organization, 4Duke University, 5STFC, Rutherford Appleton Laboratory, 6TRIUMF, 7STFC, Rutherford Appleton Laboratory, 8UPMC, Université Paris Diderot, 9Brookhaven National Laboratory, 10STFC, Rutherford Appleton Laboratory, 11Kobe University, 12High Energy Accelerator Research Organization, 13University of Geneva, 14University of Bern, 15University of Bern, 16Colorado State University, 17Ecole Polytechnique, IN2P3-CNRS, 18Université de Lyon, Université Claude Bernard Lyon 1, 19ETH Zurich, 20Institut de Fisica d'Altes Energies, 21University of Regina, 22University of Warwick, 23IRFU, CEA Saclay, 24Oxford University, 25University of Colorado at Boulder, 26H. Niewodniczanski Institute of Nuclear Physics PAN, 27University of Bern, 28Lancaster University, 29INFN Sezione di Bari and Università e Politecnico di Bari, 30Colorado State University, 31University of Washington, 32Lancaster University, 33Ecole Polytechnique, IN2P3-CNRS, 34IRFU, CEA Saclay, 35State University of New York at Stony Brook, 36York University, 37University of Victoria, 38TRIUMF, 39TRIUMF, 40IRFU, CEA Saclay, 41H. Niewodniczanski Institute of Nuclear Physics PAN, 42University of Geneva, 43University of Rochester, 44University of Victoria, 458, deceased, 46IRFU, CEA Saclay, 47University of Warwick, 48IRFU, CEA Saclay, 49University of Victoria, 50University of Rochester, 51University of Geneva, 52University of Warwick, 53Louisiana State University, 54Ecole Polytechnique, IN2P3-CNRS, 55University of British Columbia, 56University of British Columbia, 57Colorado State University, 58University of Rochester, 59University of Toronto, 60University of Liverpool, 61IRFU, CEA Saclay, 62Institut de Fisica d'Altes Energies, 63University of Liverpool, 64University of Sheffield, 65University of Warwick, 66Institut de Fisica d'Altes Energies, 67INFN Sezione di Bari and Università e Politecnico di Bari, 68IRFU, CEA Saclay, 69Université de Lyon, Université Claude Bernard Lyon 1, 70IFIC, 71IRFU, CEA Saclay, 72University of Liverpool, 73Seoul National University, 74Ecole Polytechnique, IN2P3-CNRS, 75University of Liverpool, 76IRFU, CEA Saclay, 77University of Liverpool, 78Louisiana State University, 79INFN Sezione di Padova and Università di Padova, 80University of Washington, 81University of Liverpool, 82ETH Zurich, 83H. Niewodniczanski Institute of Nuclear Physics PAN, 84University of Pittsburgh, 85Colorado State University, 86Lancaster University, 87University of Washington, 88University of Rochester, 89IRFU, CEA Saclay, 90University of Toronto, 91INFN Sezione di Napoli and Università di Napoli, 92Oxford University, 93Ecole Polytechnique, IN2P3-CNRS, 94IRFU, CEA Saclay, 95IRFU, CEA Saclay, 96STFC, Rutherford Appleton Laboratory, 97Queen Mary University of London, 98ETH Zurich, 99Ecole Polytechnique, IN2P3-CNRS, 100Imperial College London, 101TRIUMF, 102INFN Sezione di Roma and Università di Roma "La Sapienza'', 103Ecole Polytechnique, IN2P3-CNRS, 104IRFU, CEA Saclay, 105University of Geneva, 106UPMC, Université Paris Diderot, 107STFC, Rutherford Appleton Laboratory, 108University of Pittsburgh, 109Warsaw University of Technology, 110University of Washington, 111Louisiana State University, 112IRFU, CEA Saclay, 113University of Bern, 114Brookhaven National Laboratory, 115IFIC, 116ETH Zurich, 117TRIUMF, 118Duke University, 119University of Geneva, 120Lancaster University, 121TRIUMF, 122STFC, Rutherford Appleton Laboratory, 123University of Rochester, 124University of Washington, 125University of Bern, 126University of Victoria, 127High Energy Accelerator Research Organization, 128Miyagi University of Education, 129TRIUMF, 130York University, 131Brookhaven National Laboratory, 132Queen Mary University of London, 133University of Victoria, 134Institut de Fisica d'Altes Energies, 135ETH Zurich, 136Queen Mary University of London, 137University of Regina, 138Institut de Fisica d'Altes Energies, 139State University of New York at Stony Brook, 140IRFU, CEA Saclay, 141IRFU, CEA Saclay, 142Brookhaven National Laboratory, 143Wroclaw University, 14455, deceased, 145IFIC, 146Kyoto University, 147Ecole Polytechnique, IN2P3-CNRS, 148TRIUMF, 149STFC, Daresbury Laboratory, 150STFC, Rutherford Appleton Laboratory, 151Institut de Fisica d'Altes Energies, 152Imperial College London, 153TRIUMF, 154Imperial College London, 155Oxford University, 156TRIUMF, 157IFIC, 158Kobe University, 159University of Warwick, 160Louisiana State University, 161York University, 162High Energy Accelerator Research Organization, 163University of Victoria, 164High Energy Accelerator Research Organization, 165University of Regina, 166University of British Columbia, 167Lancaster University, 168High Energy Accelerator Research Organization, 169University of Tokyo, 170University of Sheffield, 171University of British Columbia, 172TRIUMF, 173TRIUMF, 174IRFU, CEA Saclay, 175High Energy Accelerator Research Organization, 176State University of New York at Stony Brook, 177Kyoto University, 178High Energy Accelerator Research Organization, 179University of Silesia, 180University of Victoria, 181ETH Zurich, 182Queen Mary University of London, 183Kyoto University, 184Kyoto University, 185Institut de Fisica d'Altes Energies, 186High Energy Accelerator Research Organization, 187Kyoto University, 188STFC, Rutherford Appleton Laboratory, 189State University of New York at Stony Brook, 190High Energy Accelerator Research Organization, 191University of Tokyo, 192High Energy Accelerator Research Organization, 193Imperial College London, 194University of Tokyo, 195University of Tokyo, 196Institute for Nuclear Research of the Russian Academy of Sciences, 197University of British Columbia, 198University of Colorado at Boulder, 199Chonnam National University, 200Institut de Fisica d'Altes Energies, 201State University of New York at Stony Brook, 202University of Tokyo, 203University of Tokyo, 204University of Tokyo, 205University of Tokyo, 20626, deceased, 207University of Victoria, 208High Energy Accelerator Research Organization, 209Imperial College London, 210TRIUMF, 211Kyoto University, 212Boston University, 213University of Liverpool, 214Institute for Nuclear Research of the Russian Academy of Sciences, 215Imperial College London, 216TRIUMF, 217Institute for Nuclear Research of the Russian Academy of Sciences, 218University of Warsaw, 219Kyoto University, 220Chonnam National University, 221Seoul National University, 222High Energy Accelerator Research Organization, 223University of British Columbia, 224University of Silesia, 225University of Alberta, 226High Energy Accelerator Research Organization, 227Imperial College London, 228High Energy Accelerator Research Organization, 229Lancaster University, 230TRIUMF, 231Lancaster University, 232University of Geneva, 233High Energy Accelerator Research Organization, 234University of Tokyo, 235University of Tokyo, 236The Andrzej Soltan Institute for Nuclear Studies, 237Colorado State University, 238University of Bern, 239University of California, Irvine, 240Kyoto University, 241Kyoto University, 242Institute for Nuclear Research of the Russian Academy of Sciences, 243Louisiana State University, 244TRIUMF, 245Kyoto University, 246Warsaw University of Technology, 247Kyoto University, 248Louisiana State University, 249The Andrzej Soltan Institute for Nuclear Studies, 250RWTH Aachen University, 251University of Victoria, 252INFN Sezione di Padova and Università di Padova, 253University of Sheffield, 254State University of New York at Stony Brook, 255IRFU, CEA Saclay, 256TRIUMF, 257University of Tokyo, 258University of Victoria, 259University of Regina, 260Chonnam National University, 261University of British Columbia, 262University of Warwick, 263IRFU, CEA Saclay, 264State University of New York at Stony Brook, 265University of British Columbia, 266INFN Sezione di Roma and Università di Roma "La Sapienza'', 267Institut de Fisica d'Altes Energies, 268IRFU, CEA Saclay, 269INFN Sezione di Bari and Università e Politecnico di Bari, 270TRIUMF, 271High Energy Accelerator Research Organization, 272State University of New York at Stony Brook, 273Imperial College London, 274University of Rochester, 275ETH Zurich, 276TRIUMF, 277University of Colorado at Boulder, 278Brookhaven National Laboratory, 279Université de Lyon, Université Claude Bernard Lyon 1, 280University of Toronto, 281High Energy Accelerator Research Organization, 282Lancaster University, 283Warsaw University of Technology, 284Imperial College London, 285University of Regina, 286Osaka City University, 287Kyoto University, 288Institute for Nuclear Research of the Russian Academy of Sciences, 289University of Liverpool, 290IRFU, CEA Saclay, 291University of Liverpool, 292University of Rochester, 293State University of New York at Stony Brook, 294University of Tokyo, 295Lancaster University, 296University of Bern, 297Louisiana State University, 298STFC, Rutherford Appleton Laboratory, 299INFN Sezione di Padova and Università di Padova, 300The Andrzej Soltan Institute for Nuclear Studies, 301TRIUMF, 302Kyoto University, 303Institute for Nuclear Research of the Russian Academy of Sciences, 304University of California, Irvine, 305Louisiana State University, 306University of Tokyo, 307University of Tokyo, 308TRIUMF, 309IRFU, CEA Saclay, 310IFIC, 311IRFU, CEA Saclay, 312Ecole Polytechnique, IN2P3-CNRS, 313University of Warwick, 314University of Tokyo, 315TRIUMF, 316STFC, Daresbury Laboratory, 317Kyoto University, 318Brookhaven National Laboratory, 319University of Liverpool, 320University of Geneva, 321University of Victoria, 322State University of New York at Stony Brook, 323High Energy Accelerator Research Organization, 324University of Tokyo, 325High Energy Accelerator Research Organization, 326High Energy Accelerator Research Organization, 327University of Tokyo, 328Kyoto University, 329University of Pittsburgh, 330State University of New York at Stony Brook, 331STFC, Rutherford Appleton Laboratory, 332High Energy Accelerator Research Organization, 333University of Tokyo, 334Kyoto University, 335IRFU, CEA Saclay, 336Louisiana State University, 337Imperial College London, 338University of Tokyo, 339High Energy Accelerator Research Organization, 340High Energy Accelerator Research Organization, 341High Energy Accelerator Research Organization, 342University of Tokyo, 343Osaka City University, 344TRIUMF, 345TRIUMF, 346TRIUMF, 347University of British Columbia, 348Kyoto University, 349Queen Mary University of London, 350High Energy Accelerator Research Organization, 351Osaka City University, 352Dongshin University, 353INFN Sezione di Napoli and Università di Napoli, 354University of Pittsburgh, 355State University of New York at Stony Brook, 356University of Liverpool, 357STFC, Rutherford Appleton Laboratory, 358TRIUMF, 359University of Sheffield, 360University of Victoria, 3618, deceased, 362IRFU, CEA Saclay, 363Warsaw University of Technology, 364University of Victoria, 365Queen Mary University of London, 366UPMC, Université Paris Diderot, 367University of Warsaw, 368TRIUMF, 369TRIUMF, 370STFC, Rutherford Appleton Laboratory, 371The Andrzej Soltan Institute for Nuclear Studies, 372STFC, Rutherford Appleton Laboratory, 373Boston University, 374INFN Sezione di Bari and Università e Politecnico di Bari, 375State University of New York at Stony Brook, 376Lancaster University, 377STFC, Rutherford Appleton Laboratory, 378University of Geneva, 379Imperial College London, 380TRIUMF, 381University of Warwick, 382IRFU, CEA Saclay, 383UPMC, Université Paris Diderot, 384University of Rochester, 385The Andrzej Soltan Institute for Nuclear Studies, 386University of Victoria, 387STFC, Rutherford Appleton Laboratory, 388TRIUMF, 389University of Bern, 390RWTH Aachen University, 391ETH Zurich, 392Colorado State University, 393Queen Mary University of London, 394University of Sheffield, 395High Energy Accelerator Research Organization, 396Institut de Fisica d'Altes Energies, 397IRFU, CEA Saclay, 398High Energy Accelerator Research Organization, 399Imperial College London, 400State University of New York at Stony Brook, 401Duke University, 402Colorado State University, 403Imperial College London, 404University of Warwick, 405Osaka City University, 406High Energy Accelerator Research Organization, 407University of Tokyo, 408TRIUMF, 409High Energy Accelerator Research Organization, 410University of Tokyo, 411University of Tokyo, 412Imperial College London, 413STFC, Rutherford Appleton Laboratory, 414Louisiana State University, 415Oxford University, 416University of California, Irvine, 417Wroclaw University, 418University of California, Irvine, 419TRIUMF, 420IFIC, 421University of Colorado at Boulder, 422RWTH Aachen University, 423IFIC, 424TRIUMF, 425Lancaster University, 426York University, 427RWTH Aachen University, 428State University of New York at Stony Brook, 429Queen Mary University of London, 430H. Niewodniczanski Institute of Nuclear Physics PAN, 431Boston University, 432ETH Zurich, 433ETH Zurich, 434The Andrzej Soltan Institute for Nuclear Studies, 435University of Liverpool, 436Kobe University, 437Kyoto University, 438High Energy Accelerator Research Organization, 439High Energy Accelerator Research Organization, 440High Energy Accelerator Research Organization, 441High Energy Accelerator Research Organization, 442H. Niewodniczanski Institute of Nuclear Physics PAN, 443University of Silesia, 444The Andrzej Soltan Institute for Nuclear Studies, 445University of Regina, 446High Energy Accelerator Research Organization, 447State University of New York at Stony Brook, 448Kyoto University, 449Kyoto University, 450University of Tokyo, 451University of Tokyo, 452Kobe University, 453University of British Columbia, 454High Energy Accelerator Research Organization, 455High Energy Accelerator Research Organization, 456High Energy Accelerator Research Organization, 457University of Tokyo, 458Osaka City University, 459State University of New York at Stony Brook, 460High Energy Accelerator Research Organization, 461RWTH Aachen University, 462Queen Mary University of London, 463University of Sheffield, 464University of Liverpool, 465STFC, Rutherford Appleton Laboratory, 466Colorado State University, 467High Energy Accelerator Research Organization, 46821, deceased, 469University of Liverpool, 470High Energy Accelerator Research Organization, 471University of Victoria, 472Louisiana State University, 473Imperial College London, 474University of Tokyo, 475IRFU, CEA Saclay, 476Imperial College London, 477University of California, Irvine, 478Imperial College London, 479Ecole Polytechnique, IN2P3-CNRS, 480IRFU, CEA Saclay, 481University of Sheffield, 482TRIUMF, 483H. Niewodniczanski Institute of Nuclear Physics PAN, 484Oxford University, 485Duke University, 486Brookhaven National Laboratory, 487University of Sheffield, 488University of Sheffield, 489STFC, Rutherford Appleton Laboratory, 490Colorado State University, 491Imperial College London, 492Oxford University, 493Duke University, 494University of British Columbia, 495Oxford University, 496University of Warwick, 497University of Geneva, 498University of Washington, 499TRIUMF, 500Oxford University, 501Queen Mary University of London, 502Colorado State University, 503TRIUMF, 504Duke University, 505University of Tokyo, 506High Energy Accelerator Research Organization, 507High Energy Accelerator Research Organization, 508Osaka City University, 509High Energy Accelerator Research Organization, 510High Energy Accelerator Research Organization, 511State University of New York at Stony Brook, 512Kobe University, 513TRIUMF, 514Institute for Nuclear Research of the Russian Academy of Sciences, 515University of Tokyo, 516H. Niewodniczanski Institute of Nuclear Physics PAN, 517University of British Columbia, 518Warsaw University of Technology, 519Warsaw University of Technology, 520University of Colorado at Boulder, 521IRFU, CEA Saclay, 522Wroclaw University

The T2K experiment is a long-baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle {\theta}_{13} by observing {\nu}_e appearance in a {\nu}_{\mu} beam. It also aims to make a precision measurement of the known oscillation parameters, {\Delta}m^{2}_{23} and sin^{2} 2{\theta}_{23}, via {\nu}_{\mu} disappearance studies. Read More

We present new data on electron scattering from a range of nuclei taken in Hall C at Jefferson Lab. For heavy nuclei, we observe a rapid falloff in the cross section for $x>1$, which is sensitive to short range contributions to the nuclear wave-function, and in deep inelastic scattering corresponds to probing extremely high momentum quarks. This result agrees with higher energy muon scattering measurements, but is in sharp contrast to neutrino scattering measurements which suggested a dramatic enhancement in the distribution of the `super-fast' quarks probed at x>1. Read More

Cross sections for the reaction ${^1}$H($e,e'\pi^+$)$n$ were measured in Hall C at Thomas Jefferson National Accelerator Facility (JLab) using the CEBAF high-intensity, continous electron beam in order to determine the charged pion form factor. Data were taken for central four-momentum transfers ranging from $Q^2$=0.60 to 2. Read More

The charged pion form factor, Fpi(Q^2), is an important quantity which can be used to advance our knowledge of hadronic structure. However, the extraction of Fpi from data requires a model of the 1H(e,e'pi+)n reaction, and thus is inherently model dependent. Therefore, a detailed description of the extraction of the charged pion form factor from electroproduction data obtained recently at Jefferson Lab is presented, with particular focus given to the dominant uncertainties in this procedure. Read More

We report on a study of the longitudinal to transverse cross section ratio, $R=\sigma_L/\sigma_T$, at low values of $x$ and $Q^{2}$, as determined from inclusive inelastic electron-hydrogen and electron-deuterium scattering data from Jefferson Lab Hall C spanning the four-momentum transfer range 0.06 $ < Q^{2} < 2.8$ GeV$^{2}$. Read More

The effects of two-photon exchange corrections, suggested to explain the difference between measurements of the proton elastic electromagnetic form factors using the polarization transfer and Rosenbluth techniques, have been studied in elastic and inelastic scattering data. Such corrections could introduce epsilon-dependent non-linearities in inelastic Rosenbluth separations, where epsilon is the virtual photon polarization parameter. It is concluded that such non-linear effects are consistent with zero for elastic, resonance, and deep-inelastic scattering for all Q^2 and W^2 values measured. Read More

We report on a detailed study of longitudinal strength in the nucleon resonance region, presenting new results from inclusive electron-proton cross sections measured at Jefferson Lab Hall C in the four-momentum transfer range 0.2 < Q^2 < 5.5 GeV^2. Read More