V. Tadevosyan - Yerevan Physics Institute

V. Tadevosyan
Are you V. Tadevosyan?

Claim your profile, edit publications, add additional information:

Contact Details

Name
V. Tadevosyan
Affiliation
Yerevan Physics Institute
City
Yerevan
Country
Armenia

Pubs By Year

Pub Categories

 
Nuclear Experiment (35)
 
Physics - Instrumentation and Detectors (7)
 
High Energy Physics - Experiment (5)
 
High Energy Physics - Phenomenology (3)
 
Nuclear Theory (3)
 
Physics - Accelerator Physics (1)

Publications Authored By V. Tadevosyan

This workshop aimed at producing an optimized photon source concept with potential increase of scientific output at Jefferson Lab, and at refining the science for hadron physics experiments benefitting from such a high-intensity photon source. The workshop brought together the communities directly using such sources for photo-production experiments, or for conversion into $K_L$ beams. The combination of high precision calorimetry and high intensity photon sources greatly enhances scientific benefit to (deep) exclusive processes like wide-angle and time-like Compton scattering. Read More

We propose to measure the photo-production cross section of $J/{\psi}$ near threshold, in search of the recently observed LHCb hidden-charm resonances $P_c$(4380) and $P_c$(4450) consistent with 'pentaquarks'. The observation of these resonances in photo-production will provide strong evidence of the true resonance nature of the LHCb states, distinguishing them from kinematic enhancements. A bremsstrahlung photon beam produced with an 11 GeV electron beam at CEBAF covers the energy range of $J/{\psi}$ production from the threshold photo-production energy of 8. Read More

Hadronic reactions producing strange quarks such as exclusive or semi-inclusive kaon production, play an important role in studies of hadron structure and the dynamics that bind the most basic elements of nuclear physics. The small-angle capability of the new Super High Momentum Spectrometer (SHMS) in Hall C, coupled with its high momentum reach - up to the anticipated 11-GeV beam energy in Hall C - and coincidence capability with the well-understood High Momentum Spectrometer, will allow for probes of such hadron structure involving strangeness down to the smallest distance scales to date. To cleanly select the kaons, a threshold aerogel Cerenkov detector has been constructed for the SHMS. Read More

2016Jun
Affiliations: 1HKS, 2HKS, 3HKS, 4HKS, 5HKS, 6HKS, 7HKS, 8HKS, 9HKS, 10HKS, 11HKS, 12HKS, 13HKS, 14HKS, 15HKS, 16HKS, 17HKS, 18HKS, 19HKS, 20HKS, 21HKS, 22HKS, 23HKS, 24HKS, 25HKS, 26HKS, 27HKS, 28HKS, 29HKS, 30HKS, 31HKS, 32HKS, 33HKS, 34HKS, 35HKS, 36HKS, 37HKS, 38HKS, 39HKS, 40HKS, 41HKS, 42HKS, 43HKS, 44HKS, 45HKS, 46HKS, 47HKS, 48HKS, 49HKS, 50HKS, 51HKS, 52HKS, 53HKS, 54HKS, 55HKS, 56HKS, 57HKS, 58HKS, 59HKS, 60HKS, 61HKS, 62HKS, 63HKS, 64HKS, 65HKS, 66HKS, 67HKS, 68HKS, 69HKS, 70HKS, 71HKS, 72HKS, 73HKS, 74HKS, 75HKS, 76HKS, 77HKS, 78HKS, 79HKS, 80HKS, 81HKS, 82HKS, 83HKS, 84HKS, 85HKS, 86HKS

The missing mass spectroscopy of the $^{7}_{\Lambda}$He hypernucleus was performed, using the $^{7}$Li$(e,e^{\prime}K^{+})^{7}_{\Lambda}$He reaction at the Thomas Jefferson National Accelerator Facility Hall C. The $\Lambda$ binding energy of the ground state (1/2$^{+}$) was determined with a smaller error than that of the previous measurement, being $B_{\Lambda}$ = 5.55 $\pm$ 0. Read More

Structure functions, as measured in lepton-nucleon scattering, have proven to be very useful in studying the quark dynamics within the nucleon. However, it is experimentally difficult to separately determine the longitudinal and transverse structure functions, and consequently there are substantially less data available for the longitudinal structure function in particular. Here we present separated structure functions for hydrogen and deuterium at low four--momentum transfer squared, Q^2< 1 GeV^2, and compare these with parton distribution parameterizations and a k_T factorization approach. Read More

For the production of a polarized antiproton beam various methods have been suggested including the possibility that antiprotons may be produced polarized which will be checked experimentally. The polarization of antiprotons produced under typical conditions for antiproton beam preparation will be measured at the CERN/PS. If the production process creates some polarization a polarized antiproton beam could be prepared by a rather simple modification of the antiproton beam facility. Read More

Background: Measurements of forward exclusive meson production at different squared four-momenta of the exchanged virtual photon, $Q^2$, and at different four-momentum transfer, t, can be used to probe QCD's transition from meson-nucleon degrees of freedom at long distances to quark-gluon degrees of freedom at short scales. Ratios of separated response functions in $\pi^-$ and $\pi^+$ electroproduction are particularly informative. The ratio for transverse photons may allow this transition to be more easily observed, while the ratio for longitudinal photons provides a crucial verification of the assumed pole dominance, needed for reliable extraction of the pion form factor from electroproduction data. Read More

2014Sep
Authors: Qweak Collaboration, T. Allison, M. Anderson, D. Androic, D. S. Armstrong, A. Asaturyan, T. D. Averett, R. Averill, J. Balewski, J. Beaufait, R. S. Beminiwattha, J. Benesch, F. Benmokhtar, J. Bessuille, J. Birchall, E. Bonnell, J. Bowman, P. Brindza, D. B. Brown, R. D. Carlini, G. D. Cates, B. Cavness, G. Clark, J. C. Cornejo, S. Covrig Dusa, M. M. Dalton, C. A. Davis, D. C. Dean, W. Deconinck, J. Diefenbach, K. Dow, J. F. Dowd, J. A. Dunne, D. Dutta, W. S. Duvall, J. R. Echols, M. Elaasar, W. R. Falk, K. D. Finelli, J. M. Finn, D. Gaskell, M. T. W. Gericke, J. Grames, V. M. Gray, K. Grimm, F. Guo, J. Hansknecht, D. J. Harrison, E. Henderson, J. R. Hoskins, E. Ihloff, K. Johnston, D. Jones, M. Jones, R. Jones, M. Kargiantoulakis, J. Kelsey, N. Khan, P. M. King, E. Korkmaz, S. Kowalski, A. Kubera, J. Leacock, J. P. Leckey, A. R. Lee, J. H. Lee, L. Lee, Y. Liang, S. MacEwan, D. Mack, J. A. Magee, R. Mahurin, J. Mammei, J. W. Martin, A. McCreary, M. H. McDonald, M. J. McHugh, P. Medeiros, D. Meekins, J. Mei, R. Michaels, A. Micherdzinska, A. Mkrtchyan, H. Mkrtchyan, N. Morgan, J. Musson, K. E. Mesick, A. Narayan, L. Z. Ndukum, V. Nelyubin, Nuruzzaman, W. T. H. van Oers, A. K. Opper, S. A. Page, J. Pan, K. D. Paschke, S. K. Phillips, M. L. Pitt, M. Poelker, J. F. Rajotte, W. D. Ramsay, W. R. Roberts, J. Roche, P. W. Rose, B. Sawatzky, T. Seva, M. H. Shabestari, R. Silwal, N. Simicevic, G. R. Smith, S. Sobczynski, P. Solvignon, D. T. Spayde, B. Stokes, D. W. Storey, A. Subedi, R. Subedi, R. Suleiman, V. Tadevosyan, W. A. Tobias, V. Tvaskis, E. Urban, B. Waidyawansa, P. Wang, S. P. Wells, S. A. Wood, S. Yang, S. Zhamkochyan, R. B. Zielinski

The Jefferson Lab Q_weak experiment determined the weak charge of the proton by measuring the parity-violating elastic scattering asymmetry of longitudinally polarized electrons from an unpolarized liquid hydrogen target at small momentum transfer. A custom apparatus was designed for this experiment to meet the technical challenges presented by the smallest and most precise ${\vec{e}}$p asymmetry ever measured. Technical milestones were achieved at Jefferson Lab in target power, beam current, beam helicity reversal rate, polarimetry, detected rates, and control of helicity-correlated beam properties. Read More

2014Jun
Authors: L. Tang1, C. Chen2, T. Gogami3, D. Kawama4, Y. Han5, L. Yuan6, A. Matsumura7, Y. Okayasu8, T. Seva9, V. M. Rodriguez10, P. Baturin11, A. Acha12, P. Achenbach13, A. Ahmidouch14, I. Albayrak15, D. Androic16, A. Asaturyan17, R. Asaturyan18, O. Ates19, R. Badui20, O. K. Baker21, F. Benmokhtar22, W. Boeglin23, J. Bono24, P. Bosted25, E. Brash26, P. Carter27, R. Carlini28, A. Chiba29, M. E. Christy30, L. Cole31, M. M. Dalton32, S. Danagoulian33, A. Daniel34, R. De Leo35, V. Dharmawardane36, D. Doi37, K. Egiyan38, M. Elaasar39, R. Ent40, H. Fenker41, Y. Fujii42, M. Furic43, M. Gabrielyan44, L. Gan45, F. Garibaldi46, D. Gaskell47, A. Gasparian48, E. F. Gibson49, P. Gueye50, O. Hashimoto51, D. Honda52, T. Horn53, B. Hu54, Ed V. Hungerford55, C. Jayalath56, M. Jones57, K. Johnston58, N. Kalantarians59, H. Kanda60, M. Kaneta61, F. Kato62, S. Kato63, M. Kawai64, C. Keppel65, H. Khanal66, M. Kohl67, L. Kramer68, K. J. Lan69, Y. Li70, A. Liyanage71, W. Luo72, D. Mack73, K. Maeda74, S. Malace75, A. Margaryan76, G. Marikyan77, P. Markowitz78, T. Maruta79, N. Maruyama80, V. Maxwell81, D. J. Millener82, T. Miyoshi83, A. Mkrtchyan84, H. Mkrtchyan85, T. Motoba86, S. Nagao87, S. N. Nakamura88, A. Narayan89, C. Neville90, G. Niculescu91, M. I. Niculescu92, A. Nunez93, Nuruzzaman94, H. Nomura95, K. Nonaka96, A. Ohtani97, M. Oyamada98, N. Perez99, T. Petkovic100, J. Pochodzalla101, X. Qiu102, S. Randeniya103, B. Raue104, J. Reinhold105, R. Rivera106, J. Roche107, C. Samanta108, Y. Sato109, B. Sawatzky110, E. K. Segbefia111, D. Schott112, A. Shichijo113, N. Simicevic114, G. Smith115, Y. Song116, M. Sumihama117, V. Tadevosyan118, T. Takahashi119, N. Taniya120, K. Tsukada121, V. Tvaskis122, M. Veilleux123, W. Vulcan124, S. Wells125, F. R. Wesselmann126, S. A. Wood127, T. Yamamoto128, C. Yan129, Z. Ye130, K. Yokota131, S. Zhamkochyan132, L. Zhu133
Affiliations: 1HKS - JLab E05-115 and E01-001 - Collaborations, 2HKS - JLab E05-115 and E01-001 - Collaborations, 3HKS - JLab E05-115 and E01-001 - Collaborations, 4HKS - JLab E05-115 and E01-001 - Collaborations, 5HKS - JLab E05-115 and E01-001 - Collaborations, 6HKS - JLab E05-115 and E01-001 - Collaborations, 7HKS - JLab E05-115 and E01-001 - Collaborations, 8HKS - JLab E05-115 and E01-001 - Collaborations, 9HKS - JLab E05-115 and E01-001 - Collaborations, 10HKS - JLab E05-115 and E01-001 - Collaborations, 11HKS - JLab E05-115 and E01-001 - Collaborations, 12HKS - JLab E05-115 and E01-001 - Collaborations, 13HKS - JLab E05-115 and E01-001 - Collaborations, 14HKS - JLab E05-115 and E01-001 - Collaborations, 15HKS - JLab E05-115 and E01-001 - Collaborations, 16HKS - JLab E05-115 and E01-001 - Collaborations, 17HKS - JLab E05-115 and E01-001 - Collaborations, 18HKS - JLab E05-115 and E01-001 - Collaborations, 19HKS - JLab E05-115 and E01-001 - Collaborations, 20HKS - JLab E05-115 and E01-001 - Collaborations, 21HKS - JLab E05-115 and E01-001 - Collaborations, 22HKS - JLab E05-115 and E01-001 - Collaborations, 23HKS - JLab E05-115 and E01-001 - Collaborations, 24HKS - JLab E05-115 and E01-001 - Collaborations, 25HKS - JLab E05-115 and E01-001 - Collaborations, 26HKS - JLab E05-115 and E01-001 - Collaborations, 27HKS - JLab E05-115 and E01-001 - Collaborations, 28HKS - JLab E05-115 and E01-001 - Collaborations, 29HKS - JLab E05-115 and E01-001 - Collaborations, 30HKS - JLab E05-115 and E01-001 - Collaborations, 31HKS - JLab E05-115 and E01-001 - Collaborations, 32HKS - JLab E05-115 and E01-001 - Collaborations, 33HKS - JLab E05-115 and E01-001 - Collaborations, 34HKS - JLab E05-115 and E01-001 - Collaborations, 35HKS - JLab E05-115 and E01-001 - Collaborations, 36HKS - JLab E05-115 and E01-001 - Collaborations, 37HKS - JLab E05-115 and E01-001 - Collaborations, 38HKS - JLab E05-115 and E01-001 - Collaborations, 39HKS - JLab E05-115 and E01-001 - Collaborations, 40HKS - JLab E05-115 and E01-001 - Collaborations, 41HKS - JLab E05-115 and E01-001 - Collaborations, 42HKS - JLab E05-115 and E01-001 - Collaborations, 43HKS - JLab E05-115 and E01-001 - Collaborations, 44HKS - JLab E05-115 and E01-001 - Collaborations, 45HKS - JLab E05-115 and E01-001 - Collaborations, 46HKS - JLab E05-115 and E01-001 - Collaborations, 47HKS - JLab E05-115 and E01-001 - Collaborations, 48HKS - JLab E05-115 and E01-001 - Collaborations, 49HKS - JLab E05-115 and E01-001 - Collaborations, 50HKS - JLab E05-115 and E01-001 - Collaborations, 51HKS - JLab E05-115 and E01-001 - Collaborations, 52HKS - JLab E05-115 and E01-001 - Collaborations, 53HKS - JLab E05-115 and E01-001 - Collaborations, 54HKS - JLab E05-115 and E01-001 - Collaborations, 55HKS - JLab E05-115 and E01-001 - Collaborations, 56HKS - JLab E05-115 and E01-001 - Collaborations, 57HKS - JLab E05-115 and E01-001 - Collaborations, 58HKS - JLab E05-115 and E01-001 - Collaborations, 59HKS - JLab E05-115 and E01-001 - Collaborations, 60HKS - JLab E05-115 and E01-001 - Collaborations, 61HKS - JLab E05-115 and E01-001 - Collaborations, 62HKS - JLab E05-115 and E01-001 - Collaborations, 63HKS - JLab E05-115 and E01-001 - Collaborations, 64HKS - JLab E05-115 and E01-001 - Collaborations, 65HKS - JLab E05-115 and E01-001 - Collaborations, 66HKS - JLab E05-115 and E01-001 - Collaborations, 67HKS - JLab E05-115 and E01-001 - Collaborations, 68HKS - JLab E05-115 and E01-001 - Collaborations, 69HKS - JLab E05-115 and E01-001 - Collaborations, 70HKS - JLab E05-115 and E01-001 - Collaborations, 71HKS - JLab E05-115 and E01-001 - Collaborations, 72HKS - JLab E05-115 and E01-001 - Collaborations, 73HKS - JLab E05-115 and E01-001 - Collaborations, 74HKS - JLab E05-115 and E01-001 - Collaborations, 75HKS - JLab E05-115 and E01-001 - Collaborations, 76HKS - JLab E05-115 and E01-001 - Collaborations, 77HKS - JLab E05-115 and E01-001 - Collaborations, 78HKS - JLab E05-115 and E01-001 - Collaborations, 79HKS - JLab E05-115 and E01-001 - Collaborations, 80HKS - JLab E05-115 and E01-001 - Collaborations, 81HKS - JLab E05-115 and E01-001 - Collaborations, 82HKS - JLab E05-115 and E01-001 - Collaborations, 83HKS - JLab E05-115 and E01-001 - Collaborations, 84HKS - JLab E05-115 and E01-001 - Collaborations, 85HKS - JLab E05-115 and E01-001 - Collaborations, 86HKS - JLab E05-115 and E01-001 - Collaborations, 87HKS - JLab E05-115 and E01-001 - Collaborations, 88HKS - JLab E05-115 and E01-001 - Collaborations, 89HKS - JLab E05-115 and E01-001 - Collaborations, 90HKS - JLab E05-115 and E01-001 - Collaborations, 91HKS - JLab E05-115 and E01-001 - Collaborations, 92HKS - JLab E05-115 and E01-001 - Collaborations, 93HKS - JLab E05-115 and E01-001 - Collaborations, 94HKS - JLab E05-115 and E01-001 - Collaborations, 95HKS - JLab E05-115 and E01-001 - Collaborations, 96HKS - JLab E05-115 and E01-001 - Collaborations, 97HKS - JLab E05-115 and E01-001 - Collaborations, 98HKS - JLab E05-115 and E01-001 - Collaborations, 99HKS - JLab E05-115 and E01-001 - Collaborations, 100HKS - JLab E05-115 and E01-001 - Collaborations, 101HKS - JLab E05-115 and E01-001 - Collaborations, 102HKS - JLab E05-115 and E01-001 - Collaborations, 103HKS - JLab E05-115 and E01-001 - Collaborations, 104HKS - JLab E05-115 and E01-001 - Collaborations, 105HKS - JLab E05-115 and E01-001 - Collaborations, 106HKS - JLab E05-115 and E01-001 - Collaborations, 107HKS - JLab E05-115 and E01-001 - Collaborations, 108HKS - JLab E05-115 and E01-001 - Collaborations, 109HKS - JLab E05-115 and E01-001 - Collaborations, 110HKS - JLab E05-115 and E01-001 - Collaborations, 111HKS - JLab E05-115 and E01-001 - Collaborations, 112HKS - JLab E05-115 and E01-001 - Collaborations, 113HKS - JLab E05-115 and E01-001 - Collaborations, 114HKS - JLab E05-115 and E01-001 - Collaborations, 115HKS - JLab E05-115 and E01-001 - Collaborations, 116HKS - JLab E05-115 and E01-001 - Collaborations, 117HKS - JLab E05-115 and E01-001 - Collaborations, 118HKS - JLab E05-115 and E01-001 - Collaborations, 119HKS - JLab E05-115 and E01-001 - Collaborations, 120HKS - JLab E05-115 and E01-001 - Collaborations, 121HKS - JLab E05-115 and E01-001 - Collaborations, 122HKS - JLab E05-115 and E01-001 - Collaborations, 123HKS - JLab E05-115 and E01-001 - Collaborations, 124HKS - JLab E05-115 and E01-001 - Collaborations, 125HKS - JLab E05-115 and E01-001 - Collaborations, 126HKS - JLab E05-115 and E01-001 - Collaborations, 127HKS - JLab E05-115 and E01-001 - Collaborations, 128HKS - JLab E05-115 and E01-001 - Collaborations, 129HKS - JLab E05-115 and E01-001 - Collaborations, 130HKS - JLab E05-115 and E01-001 - Collaborations, 131HKS - JLab E05-115 and E01-001 - Collaborations, 132HKS - JLab E05-115 and E01-001 - Collaborations, 133HKS - JLab E05-115 and E01-001 - Collaborations

Since the pioneering experiment, E89-009 studying hypernuclear spectroscopy using the $(e,e^{\prime}K^+)$ reaction was completed, two additional experiments, E01-011 and E05-115, were performed at Jefferson Lab. These later experiments used a modified experimental design, the "tilt method", to dramatically suppress the large electromagnetic background, and allowed for a substantial increase in luminosity. Additionally, a new kaon spectrometer, HKS (E01-011), a new electron spectrometer, HES, and a new splitting magnet were added to produce precision, high-resolution hypernuclear spectroscopy. Read More

2014Apr
Affiliations: 1The Jefferson Lab Fpi Collaboration, 2The Jefferson Lab Fpi Collaboration, 3The Jefferson Lab Fpi Collaboration, 4The Jefferson Lab Fpi Collaboration, 5The Jefferson Lab Fpi Collaboration, 6The Jefferson Lab Fpi Collaboration, 7The Jefferson Lab Fpi Collaboration, 8The Jefferson Lab Fpi Collaboration, 9The Jefferson Lab Fpi Collaboration, 10The Jefferson Lab Fpi Collaboration, 11The Jefferson Lab Fpi Collaboration, 12The Jefferson Lab Fpi Collaboration, 13The Jefferson Lab Fpi Collaboration, 14The Jefferson Lab Fpi Collaboration, 15The Jefferson Lab Fpi Collaboration, 16The Jefferson Lab Fpi Collaboration, 17The Jefferson Lab Fpi Collaboration, 18The Jefferson Lab Fpi Collaboration, 19The Jefferson Lab Fpi Collaboration, 20The Jefferson Lab Fpi Collaboration, 21The Jefferson Lab Fpi Collaboration, 22The Jefferson Lab Fpi Collaboration, 23The Jefferson Lab Fpi Collaboration, 24The Jefferson Lab Fpi Collaboration, 25The Jefferson Lab Fpi Collaboration, 26The Jefferson Lab Fpi Collaboration, 27The Jefferson Lab Fpi Collaboration, 28The Jefferson Lab Fpi Collaboration, 29The Jefferson Lab Fpi Collaboration, 30The Jefferson Lab Fpi Collaboration, 31The Jefferson Lab Fpi Collaboration, 32The Jefferson Lab Fpi Collaboration, 33The Jefferson Lab Fpi Collaboration, 34The Jefferson Lab Fpi Collaboration, 35The Jefferson Lab Fpi Collaboration, 36The Jefferson Lab Fpi Collaboration, 37The Jefferson Lab Fpi Collaboration, 38The Jefferson Lab Fpi Collaboration, 39The Jefferson Lab Fpi Collaboration, 40The Jefferson Lab Fpi Collaboration, 41The Jefferson Lab Fpi Collaboration, 42The Jefferson Lab Fpi Collaboration, 43The Jefferson Lab Fpi Collaboration, 44The Jefferson Lab Fpi Collaboration, 45The Jefferson Lab Fpi Collaboration, 46The Jefferson Lab Fpi Collaboration, 47The Jefferson Lab Fpi Collaboration, 48The Jefferson Lab Fpi Collaboration, 49The Jefferson Lab Fpi Collaboration, 50The Jefferson Lab Fpi Collaboration, 51The Jefferson Lab Fpi Collaboration, 52The Jefferson Lab Fpi Collaboration, 53The Jefferson Lab Fpi Collaboration, 54The Jefferson Lab Fpi Collaboration, 55The Jefferson Lab Fpi Collaboration, 56The Jefferson Lab Fpi Collaboration, 57The Jefferson Lab Fpi Collaboration, 58The Jefferson Lab Fpi Collaboration, 59The Jefferson Lab Fpi Collaboration, 60The Jefferson Lab Fpi Collaboration, 61The Jefferson Lab Fpi Collaboration, 62The Jefferson Lab Fpi Collaboration, 63The Jefferson Lab Fpi Collaboration, 64The Jefferson Lab Fpi Collaboration, 65The Jefferson Lab Fpi Collaboration, 66The Jefferson Lab Fpi Collaboration, 67The Jefferson Lab Fpi Collaboration, 68The Jefferson Lab Fpi Collaboration, 69The Jefferson Lab Fpi Collaboration, 70The Jefferson Lab Fpi Collaboration, 71The Jefferson Lab Fpi Collaboration, 72The Jefferson Lab Fpi Collaboration, 73The Jefferson Lab Fpi Collaboration, 74The Jefferson Lab Fpi Collaboration, 75The Jefferson Lab Fpi Collaboration, 76The Jefferson Lab Fpi Collaboration, 77The Jefferson Lab Fpi Collaboration, 78The Jefferson Lab Fpi Collaboration, 79The Jefferson Lab Fpi Collaboration, 80The Jefferson Lab Fpi Collaboration, 81The Jefferson Lab Fpi Collaboration, 82The Jefferson Lab Fpi Collaboration, 83The Jefferson Lab Fpi Collaboration, 84The Jefferson Lab Fpi Collaboration, 85The Jefferson Lab Fpi Collaboration, 86The Jefferson Lab Fpi Collaboration, 87The Jefferson Lab Fpi Collaboration, 88The Jefferson Lab Fpi Collaboration

The study of exclusive $\pi^{\pm}$ electroproduction on the nucleon, including separation of the various structure functions, is of interest for a number of reasons. The ratio $R_L=\sigma_L^{\pi^-}/\sigma_L^{\pi^+}$ is sensitive to isoscalar contamination to the dominant isovector pion exchange amplitude, which is the basis for the determination of the charged pion form factor from electroproduction data. A change in the value of $R_T=\sigma_T^{\pi^-}/\sigma_T^{\pi^+}$ from unity at small $-t$, to 1/4 at large $-t$, would suggest a transition from coupling to a (virtual) pion to coupling to individual quarks. Read More

A subset of results from the recently completed Jefferson Lab Qweak experiment are reported. This experiment, sensitive to physics beyond the Standard Model, exploits the small parity-violating asymmetry in elastic ep scattering to provide the first determination of the protons weak charge Qweak(p). The experiment employed a 180 uA longitudinally polarized 1. Read More

The Qweak experiment has measured the parity-violating asymmetry in polarized e-p elastic scattering at Q^2 = 0.025(GeV/c)^2, employing 145 microamps of 89% longitudinally polarized electrons on a 34.4cm long liquid hydrogen target at Jefferson Lab. Read More

The parity-violating asymmetry arising from inelastic electron-nucleon scattering at backward angle (~95 degrees) near the Delta(1232) resonance has been measured using a hydrogen target. From this asymmetry, we extracted the axial transition form factor G^A_{N\Delta}, a function of the axial Adler form factors C^A_i. Though G^A_{N\Delta} has been previously studied using charged current reactions, this is the first measurement of the weak neutral current excitation of the Delta using a proton target. Read More

The lifetime of a Lambda particle embedded in a nucleus (hypernucleus) decreases from that of free Lambda decay due to the opening of the Lambda N to NN weak decay channel. However, it is generally believed that the lifetime of a hypernucleus attains a constant value (saturation) for medium to heavy hypernuclear masses, yet this hypothesis has been difficult to verify. The present paper reports a direct measurement of the lifetime of medium-heavy hypernuclei produced with a photon-beam from Fe, Cu, Ag, and Bi targets. Read More

2012Jul
Affiliations: 1HKS, 2HKS, 3HKS, 4HKS, 5HKS, 6HKS, 7HKS, 8HKS, 9HKS, 10HKS, 11HKS, 12HKS, 13HKS, 14HKS, 15HKS, 16HKS, 17HKS, 18HKS, 19HKS, 20HKS, 21HKS, 22HKS, 23HKS, 24HKS, 25HKS, 26HKS, 27HKS, 28HKS, 29HKS, 30HKS, 31HKS, 32HKS, 33HKS, 34HKS, 35HKS, 36HKS, 37HKS, 38HKS, 39HKS, 40HKS, 41HKS, 42HKS, 43HKS, 44HKS, 45HKS, 46HKS, 47HKS, 48HKS, 49HKS, 50HKS, 51HKS, 52HKS, 53HKS, 54HKS, 55HKS, 56HKS, 57HKS, 58HKS, 59HKS, 60HKS, 61HKS, 62HKS, 63HKS, 64HKS, 65HKS, 66HKS, 67HKS, 68HKS, 69HKS, 70HKS, 71HKS, 72HKS, 73HKS, 74HKS, 75HKS, 76HKS, 77HKS, 78HKS, 79HKS, 80HKS, 81HKS, 82HKS, 83HKS, 84HKS, 85HKS, 86HKS, 87HKS, 88HKS, 89HKS, 90HKS, 91HKS, 92HKS, 93HKS

An experiment with a newly developed high-resolution kaon spectrometer (HKS) and a scattered electron spectrometer with a novel configuration was performed in Hall C at Jefferson Lab (JLab). The ground state of a neutron-rich hypernucleus, He 7 Lambda, was observed for the first time with the (e,e'K+) reaction with an energy resolution of ~0.6 MeV. Read More

The electromagnetic calorimeters of the various magnetic spectrometers in Hall C at Jefferson Lab are presented. For the existing HMS and SOS spectrometers design considerations, relevant construction information, and comparisons of simulated and experimental results are included. The energy resolution of the HMS and SOS calorimeters is better than $\sigma/E \sim 6%/\sqrt E $, and pion/electron ($\pi/e$) separation of about 100:1 has been achieved in energy range 1 -- 5 GeV. Read More

We propose a new precision measurement of parity-violating electron scattering on the proton at very low Q^2 and forward angles to challenge predictions of the Standard Model and search for new physics. A unique opportunity exists to carry out the first precision measurement of the proton's weak charge, $Q_W =1 - 4\sin^2\theta_W$. A 2200 hour measurement of the parity violating asymmetry in elastic ep scattering at Q^2=0. Read More

We have measured the beam-normal single-spin asymmetries in elastic scattering of transversely polarized electrons from the proton, and performed the first measurement in quasi-elastic scattering on the deuteron, at backward angles (lab scattering angle of 108 degrees) for Q2 = 0.22 GeV^2/c^2 and 0.63 GeV^2/c^2 at beam energies of 362 MeV and 687 MeV, respectively. Read More

A large set of cross sections for semi-inclusive electroproduction of charged pions ($\pi^\pm$) from both proton and deuteron targets was measured. The data are in the deep-inelastic scattering region with invariant mass squared $W^2$ > 4 GeV$^2$ and range in four-momentum transfer squared $2 < Q^2 < 4$ (GeV/c)$^2$, and cover a range in the Bjorken scaling variable 0.2 < x < 0. Read More

2011Mar
Authors: G0 Collaboration, D. Androic, D. S. Armstrong, J. Arvieux, R. Asaturyan, T. D. Averett, S. L. Bailey, G. Batigne, D. H. Beck, E. J. Beise, J. Benesch, F. Benmokhtar, L. Bimbot, J. Birchall, A. Biselli, P. Bosted, H. Breuer, P. Brindza, C. L. Capuano, R. D. Carlini, R. Carr, N. Chant, Y. -C. Chao, R. Clark, A. Coppens, S. D. Covrig, A. Cowley, D. Dale, C. A. Davis, C. Ellis, W. R. Falk, H. Fenker, J. M. Finn, T. Forest, G. Franklin, R. Frascaria, C. Furget, D. Gaskell, M. T. W. Gericke, J. Grames, K. A. Griffioen, K. Grimm, G. Guillard, B. Guillon, H. Guler, K. Gustafsson, L. Hannelius, J. Hansknecht, R. D. Hasty, A. M. Hawthorne Allen, T. Horn, T. M. Ito, K. Johnston, M. Jones, P. Kammel, R. Kazimi, P. M. King, A. Kolarkar, E. Korkmaz, W. Korsch, S. Kox, J. Kuhn, J. Lachniet, R. Laszewski, L. Lee, J. Lenoble, E. Liatard, J. Liu, A. Lung, G. A. MacLachlan, J. Mammei, D. Marchand, J. W. Martin, D. J. Mack, K. W. McFarlane, D. W. McKee, R. D. McKeown, F. Merchez, M. Mihovilovic, A. Micherdzinska, H. Mkrtchyan, B. Moffit, M. Morlet, M. Muether, J. Musson, K. Nakahara, R. Neveling, S. Niccolai, D. Nilsson, S. Ong, S. A. Page, V. Papavassiliou, S. F. Pate, S. K. Phillips, P. Pillot, M. L. Pitt, M. Poelker, T. A. Porcelli, G. Quemener, B. P. Quinn, W. D. Ramsay, A. W. Rauf, J. -S. Real, T. Ries, J. Roche P. Roos, G. A. Rutledge, J. Schaub, J. Secrest, T. Seva, N. Simicevic, G. R. Smith, D. T. Spayde, S. Stepanyan, M. Stutzman, R. Suleiman, V. Tadevosyan, R. Tieulent, J. van de Wiele, W. T. H. van Oers, M. Versteegen, E. Voutier, W. F. Vulcan, S. P. Wells, G. Warren, S. E. Williamson, R. J. Woo, S. A. Wood, C. Yan, J. Yun, V. Zeps

In the G0 experiment, performed at Jefferson Lab, the parity-violating elastic scattering of electrons from protons and quasi-elastic scattering from deuterons is measured in order to determine the neutral weak currents of the nucleon. Asymmetries as small as 1 part per million in the scattering of a polarized electron beam are determined using a dedicated apparatus. It consists of specialized beam-monitoring and control systems, a cryogenic hydrogen (or deuterium) target, and a superconducting, toroidal magnetic spectrometer equipped with plastic scintillation and aerogel Cerenkov detectors, as well as fast readout electronics for the measurement of individual events. Read More

We present new data on electron scattering from a range of nuclei taken in Hall C at Jefferson Lab. For heavy nuclei, we observe a rapid falloff in the cross section for $x>1$, which is sensitive to short range contributions to the nuclear wave-function, and in deep inelastic scattering corresponds to probing extremely high momentum quarks. This result agrees with higher energy muon scattering measurements, but is in sharp contrast to neutrino scattering measurements which suggested a dramatic enhancement in the distribution of the `super-fast' quarks probed at x>1. Read More

Cross sections for the reaction ${^1}$H($e,e'\pi^+$)$n$ were measured in Hall C at Thomas Jefferson National Accelerator Facility (JLab) using the CEBAF high-intensity, continous electron beam in order to determine the charged pion form factor. Data were taken for central four-momentum transfers ranging from $Q^2$=0.60 to 2. Read More

The charged pion form factor, Fpi(Q^2), is an important quantity which can be used to advance our knowledge of hadronic structure. However, the extraction of Fpi from data requires a model of the 1H(e,e'pi+)n reaction, and thus is inherently model dependent. Therefore, a detailed description of the extraction of the charged pion form factor from electroproduction data obtained recently at Jefferson Lab is presented, with particular focus given to the dominant uncertainties in this procedure. Read More

2004Nov
Affiliations: 1Yerevan Physics Institute, 2Thomas Jefferson National Accelerator Facility, 3Thomas Jefferson National Accelerator Facility, 4Thomas Jefferson National Accelerator Facility, 5University of Regina, 6Thomas Jefferson National Accelerator Facility, 7Thomas Jefferson National Accelerator Facility, 8Yerevan Physics Institute, 9Thomas Jefferson National Accelerator Facility, 10Houston Baptist University, 11Yerevan Physics Institute, 12Yerevan Physics Institute, 13Thomas Jefferson National Accelerator Facility

We describe a new aerogel threshold Cherenkov detector installed in the HMS spectrometer in Hall C at Jefferson Lab. The Hall C experimental program in 2003 required an improved particle identification system for better identification of pi/K/P, which was achieved by installing an additional threshold Cherenkov counter. Two types of aerogel with n=1. Read More

We report on a detailed study of longitudinal strength in the nucleon resonance region, presenting new results from inclusive electron-proton cross sections measured at Jefferson Lab Hall C in the four-momentum transfer range 0.2 < Q^2 < 5.5 GeV^2. Read More

A pioneering experiment in Lambda hypernuclear spectroscopy, undertaken at the Thomas Jefferson National Accelerator Facility (Jlab), was recently reported. The experiment used the high- precision, continuous electron beam at Jlab, and a special arrangement of spectrometer magnets to measure the spectrum from {nat}C and 7Li targets using the (e,e' K+)reaction. The 12B hypernuclear spectrum was previously published. Read More